• Title/Summary/Keyword: Viscoelastic Model

Search Result 497, Processing Time 0.023 seconds

Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.391-403
    • /
    • 2019
  • In this article the frequency response analysis of curved magneto-electro-viscoelastic functionally graded (CMEV-FG) nanobeams resting on viscoelastic foundation has been carried out. To this end, the study incorporates the Euler-Bernoulli beam model in association with Eringen's nonlocal theory to incorporate the size effects. The viscoelastic foundation in the current investigation is assumed to be the combination of Winkler-Pasternak layer and viscous layer of infinite parallel dashpots. The equations of motion are derived with the aid of Hamilton's principle and the solution to vibration problem of CMEV-FG nanobeams are obtained analytically. The material gradation is considered to follow Power-law rule. This study thoroughly investigates the influence of prominent parameters such as linear, shear and viscous layers of foundation, structural damping coefficient, opening angle, magneto-electrical field, nonlocal parameter, power-law exponent and slenderness ratio on the frequencies of FG nanobeams.

Modeling of supersonic nonlinear flutter of plates on a visco-elastic foundation

  • Khudayarov, Bakhtiyar Alimovich
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.257-272
    • /
    • 2019
  • Numerical study of the flutter of a plate on a viscoelastic foundation is carried out in the paper. Critical velocity of the flutter of a plate on an elastic and viscoelastic foundation is determined. The mathematical model for the investigation of viscoelastic plates is based on the Marguerre's theory applied to the study of the problems of strength, rigidity and stability of thin-walled structures such as aircraft wings. Aerodynamic pressure is determined in accordance with the A.A. Ilyushin's piston theory. Using the Bubnov - Galerkin method, the basic resolving systems of nonlinear integro-differential equations (IDE) are obtained. At wide ranges of geometric and physical parameters of viscoelastic plates, their influence on the flutter velocity has been studied in detail.

Consideration of Frequency Dependent Complex Stiffness of Rubber Busings in Transmission Force Analysis of a Vehicle Suspension System (고무 부싱의 주파수 의존 복소 강성을 고려한 차량 현가 장치에서의 전달력 분석)

  • 이준화;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.34-39
    • /
    • 1998
  • In order to compute the forces which are transmitted through rubber bushings with a commercial multibody dynamic analysis (MBDA) program, a rubber bushing model is needed. The rubber bushing model of MBDA programs such as DADS or ADAMS is the Voigt model which is simply a parallel spring-viscous damper system, meaning that the damping force of the Voigt model is proportional to the frequency. However, experiments do not necessarily support this proportionality. Alternatively, the viscoelastic characteristics of rubber bushings can be better represented by the complex stiffness. The purpose of this paper is to develop a viscoelastic rubber bushing model for the MBDA programs. Firstly, a methodology is proposed to calculate the complex stiffness of rubber bushings considering static and dynamic load conditions. Secondly, a viscoelastic rubber bushing model developed which uses standard elements provided by DADS. The proposed methods are applied to the rubber bushings of the lower control arms of a rear suspension of a 1994 Ford Taurus model. Then, the forces computed for the rubber bushing model are analyzed and compared with the Voigt model in time and frequency domains.

  • PDF

Dynamic Experiment of a Full-Scale Five-story Steel Building with Viscoelastic Dampers (점탄성 감쇠기가 설치된 실물크기 5층 철골건물의 진동실험)

  • 민경원;이영철;이상현;박민규;김두훈;박진일;정정교
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.239-246
    • /
    • 2002
  • Viscoelastic dampers are known effective devices for response reduction under earthquakes and winds. This study addresses how to design the optimum viscoelastic dampers installed at the full scale five-story steel building and novel approach to carry out the experimental work to verify the damper performance. First, an exciter of hybrid mass-type actuator is designed, which can move the building and its mathematical model is derived. The integrated system of building-actuator is experimentally analyzed for mathematical model. Second, convex model is applied for the prediction of required additional damping ratios to reduce responses below a specified target level. Chevron-type viscoelastic dampers are manufactured and installed at the first and second inter-stories, which are optimum places for response reduction. Sine-sweep and white noise excitations, which are generated by the hybrid mass-type actuator, are applied to the full scale building without and with dampers for performance verification. The transfer function of the building with four dampers, two of them installed at each first and second inter-story, are found to be lower than that of the building with two dampers installed at the first inter-story

  • PDF

Measurement Method of Complex Dynamic Viscoelastic Material Properties (점탄성 재료의 복소수 동특성 측정방법)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.489-495
    • /
    • 2009
  • A novel technique to measuret of viscoelastic properties of polymers is proposed to investigate complex Poisson's ratio as a function of frequency. The forced vibration responses for the samples under the normal and the shear deformation are to be measured with varying load masses. The measured data were used to obtain the viscoelastic properties of the material based on an accurate 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Comprehensive measurements of viscoelastic properties of two slightly varied silicone RTV rubber ($Silastic^{(R)}$ S2) compositions were performed. Standard composition (90% PDMS polymer + 10% catalyst) and modified composition (92.5% polymer + 7.5% catalyst) were tested in temperature range from $30^{\circ}C$ to $70^{\circ}C$. Shear modulus, modulus of elasticity, loss factor, and both the real and the imaginary parts of the Poisson's ratio were determined for frequencies from 50 to 400Hz in the linear deformation regime (at relative deformations $10^{-4}{\sim}10^{-3}$).

Nonlinear vibration and primary resonance of multilayer functionally graded shallow shells with porous core

  • Kamran Foroutan;Liming Dai
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.335-351
    • /
    • 2023
  • This research studies the primary resonance and nonlinear vibratory responses of multilayer functionally graded shallow (MFGS) shells under external excitations. The shells considered with functionally graded porous (FGP) core and resting on two types of nonlinear viscoelastic foundations (NVEF) governed by either a linear model with two parameters of Winkler and Pasternak foundations or a nonlinear model of hardening/softening cubic stiffness augmented by a Kelvin-Voigt viscoelastic model. The shells considered have three layers, sandwiched by functionally graded (FG), FGP, and FG materials. To investigate the influence of various porosity distributions, two types of FGP middle layer cores are considered. With the first-order shear deformation theory (FSDT), Hooke's law, and von-Kármán equation, the stress-strain relations for the MFGS shells with FGP core are developed. The governing equations of the shells are consequently derived. For the sake of higher accuracy and reliability, the P-T method is implemented in numerically analyzing the vibration, and the method of multiple scales (MMS) as one of the perturbation methods is used to investigate the primary resonance. The results of the present research are verified with the results available in the literature. The analytical results are compared with the P-T method. The influences of material, geometry, and nonlinear viscoelastic foundation parameters on the responses of the shells are illustrated.

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Nonlinear vibration analysis of fluid-conveying cantilever graphene platelet reinforced pipe

  • Bashar Mahmood Ali;Mehmet AKKAS;Aybaba HANCERLIOGULLARI;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • This paper is motivated by the lack of studies relating to vibration and nonlinear resonance of fluid-conveying cantilever porous GPLR pipes with fractional viscoelastic model resting on nonlinear foundations. A dynamical model of cantilever porous Graphene Platelet Reinforced (GPLR) pipes conveying fluid and resting on nonlinear foundation is proposed, and the vibration, natural frequencies and primary resonant of such system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with fractional viscoelastic model is used to govern the construction relation of the nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied on pipe and excitation frequency is close to the first natural frequency. The governing equation for transverse motion of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Compressive Creep Behavior of Fruits

  • Kim, M.S.;Park, J.M.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1329-1339
    • /
    • 1993
  • Creep tests were performed to determine the nonlinear viscoelastic properties of apples and pears with the creep experiment apparatus designed in this study. Compressive creep characteristics of fruits were tested at two kinds of storage conditions, four periods of storage and three levels of initial stress. Ten replications were made at each treatment combination. The creep behavior of the fruits could be well described by the nonlinear viscoelastic model as a function of initial stress and time. however, for each level of initial stress applied, the compressive behavior of the samples was satisfactorily represented by Burger's model. For all sample fruits, the longer the samples was stored, the higher the instantaneous elastic strain was observed, and the creep progressed at a high rate. These phenomena were even more remarkable on the fruit stored at the normal temperature storage rather than at the low temperature storage.

  • PDF

Bifurcation Analysis of a Non-linear Hysteretic Oscillating System (비선형 히스테리시스 진동시스템의 분기해석)

  • 송덕근;최진권;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.289-294
    • /
    • 2001
  • Three kinds of viscoelastic damper model, which has a non-linear spring as an element is studied analytically and numerically. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by a non-linear constitutive equation and an additional equation of motion. Harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurrences of such non-linear phenomena.

  • PDF