• Title/Summary/Keyword: Viscoelastic Model

Search Result 495, Processing Time 0.032 seconds

Stress Relaxation of Wood and Theoretical Models under Tensile and Bending Strain (인장과 휨변형하에서 목재의 응력이완 및 이론모형)

  • Jang, Sang-Sik;Kang, Chun-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.13-19
    • /
    • 1998
  • Stress relaxation tests have been performed under five different tensile strain levels and five different bending strain levels. Three different theoretical models have been developed based on four-element Burger's model, viscoelastic theory and viscous-viscoelastic theory. Experimental data were used to obtain parameters of the models and to verify accuracy of the models. Among the three theoretical models developed in this study, three-integral model (Model 3) based on viscous-viscoelastic theory showed the most exact estimations of stress relaxation under both tensile and bending strains and their correlation coefficients were greater than 0.99 for all the strain levels. Model 1 showed little initial stress relaxation. Model 2 showed excessive initial relaxation and, then, no relaxation after about 20 minute of strain application. Stress retention under strain decreased as strain increased, which means increased stress relaxation as strain increases. When the strain level was less than proportional limit, the effect of strain level on stress relaxation was not clearly shown. However, this effect was increased as strain level increased when strain level was greater than proportional limit.

  • PDF

Stress Relaxation and Nonlinear Viscoelastic Model of PAN-PVC Copolymers (PAN-PVC 공중합체의 응력완화와 비선형 점탄성 모델)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • From the three element non-Newtonian model of one non-Newtonian viscoelastic Maxwell elements and a elastic spring, the stress relaxation equation was derived. The various model parameters of this equation were evaluated by appling the experimental results of stress relaxation to the stress relaxation equation. The theoretical curves calculated from this model parameters agreed with the experimental stress relaxation curves. From the parameters of nonlinear viscoelastic model, the hole volume, fine structure, viscoelastic properties and mechanical properties of polymer fibers were studied. The experiments of stress relaxation were carried out using the tensile tester with the solvent chamber. The stress relaxation curves of the two types polyacrylonitrile-polyvinylchloride copolymer and another two types PVC monofilament fibers were obtained in air and water of various temperatures.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

Development of Warpage Simulation Method according to Thermal Stress based on Equivalent Anisotropic Viscoelastic Model (등가 이방성 점탄성 모델 기반 열 응력에 따른 휨 해석 기법 개발)

  • Kim, Heon-Su;Kim, Hak-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.43-48
    • /
    • 2022
  • In this study, simulation method was developed to improve the accuracy of the warpage simulation based on the equivalent anisotropic viscoelastic model. First, a package with copper traces and bumps was modeled to implement anisotropic viscoelastic behavior. Then, equivalent anisotropic viscoelastic properties and thermal expansion coefficient for the bump region were derived through the representative volume element model. A thermal cycle of 0 to 125 degrees was applied to the package based on the derived mechanical properties, and the warpage according to the thermal cycle was simulated. To verify the simulation results, the actual package was manufactured, and the warpage with respect to the thermal cycle was measured through shadow moiré interferometer. As a result, by applying the equivalent anisotropic viscoelastic model, it was possible to calculate the warpage of the package within 5 ㎛ error and predict the shape of the warpage.

Dynamics of multilayered viscoelastic beams

  • Roy, H.;Dutt, J.K.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.391-406
    • /
    • 2009
  • Viscoelastic materials store as well as dissipate energy to the thermal domain under deformation. Two efficient modelling techniques reported in literature use coupled (thermo-mechanical) ATF (Augmenting Thermodynamic Fields) displacements and ADF (Anelastic Displacement Fields) displacements, to represent the constitutive relationship in time domain by using certain viscoelastic parameters. Viscoelastic parameters are first extracted from the storage modulus and loss factor normally reported in hand books with the help of Genetic Algorithm and then constitutive relationships are used to obtain the equations of motion of the continuum after discretizing it with finite beam elements. The equations of motion are solved to get the frequency response function and modal damping ratio. The process may be applied to study the dynamic behaviour of composite beams and rotors comprising of several viscoelastic layers. Dynamic behaviour of a composite beam, formed by concentric layers of steel and aluminium is studied as an example.

Boundary Element Analysis of Interface Stresses in a Thin Film Due to Moisture Absorption (수분 흡수로 인해 얇은 필름에 발생하는 계면 응력의 경계요소해석)

  • 이상순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.19-26
    • /
    • 1999
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate as the film absorbs moisture from the ambient environment. The rime-domain boundary element method is employed to investigate the behavior of interface stresses. The order of the free-edge singularity is obtained numerically for a given viscoelastic model. It is shown that the free-edge stress intensity factor is relaxed with time,'while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

Experimental Study on Vibration Control of Bracing Dampers using Rubbers (방진원 고무를 이용한 가새형 감쇠기의 진동제어 실험연구)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.249-257
    • /
    • 1998
  • Vibration-resistant rubbers, whose elastic and shear behaviors are similar to viscoelastic materials, are used to make bracing dampers to reduce the building vibration. Experimental study is carried out to find the vibration characteristics of the dampers installed in the building model. The natural frequencies and modal damping ratios are obtained from the free vibration test and Fourier analysis. Shaking table test is performed to find the response behavior of the building model under earthquake loading. The present experimental study shows that the bracing dampers have the behavior of viscoelastic dampers, which increase the modal damping ratios and viscoelastic characteristics.

  • PDF

Analysis of Moisture Stresses Induced in Polymeric Thin Film (고분자 박막에서 발생하는 수분응력 해석)

  • 이상순
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.137-142
    • /
    • 2002
  • This paper deals with the stress singularity induced at the interface corner between the elastic substrate and the viscoelastic thin film as the polymeric film absorbs moisture from the ambient environment. The boundary element method is employed to investigate the behavior of Interface stresses. The order of the singularity is obtained numerically for a given viscoelastic model. It is shown that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

Experimental and Numerical Study on the Viscoelastic Property of Polycarbonate near Glass Transition Temperature for Micro Thermal Imprint Process (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링)

  • Lan, Shuhuai;Lee, Hey-Jin;Lee, Hyoung-Wook;Song, Jung-Han;Lee, Soo-Hun;Ni, Jun;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.70-73
    • /
    • 2009
  • The aim of this research is to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature. An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model from the test data. Further validation of the model and parameters was performed by comparing the analysis of FE model results to the experimental data.

  • PDF

Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

  • Song Ki-Won;Kuk Hoa-Youn;Chang Gap-Shik
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.67-81
    • /
    • 2006
  • Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude(${\gamma}_0{\approx}150%$) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (${\gamma}_0>200%$), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semi-empirical relationship because there exists no real physical meaning for the model parameters.