• 제목/요약/키워드: Viscoelastic Damping

검색결과 268건 처리시간 0.02초

진동대 실험을 통한 강골조 구조물에 설치된 점탄성 감쇠기의 성능평가 (Performance Evaluation of Viscoelastic Dampers installed in the Steel Frame Structures Using the shaking table set)

  • 김진구;서현수;권민호;임정희;김진섭
    • 복합신소재구조학회 논문집
    • /
    • 제7권1호
    • /
    • pp.32-38
    • /
    • 2016
  • It has been many efforts for reinforcement of existing structure since the number of earthquake has been increased world widely. Especially the occurrence of earthquake surrounding area of Korean peninsular is dramatically increased. Since the buildings in Korea have not been designed to carry the lateral and shear force caused by earthquake, the building will experience massive damages even under moderate earthquake. For this reason, the viscoelastic damper is proposed in this paper to enhance the earthquake resistance of a steel frame buildings. The viscoelastic dampers have been able to increase the overall damping of the structure significantly, hence improving the overall performance of dynamically sensitive structures. In this paper, Viscoelastic dampers designed are consists of FRP panel and viscoelastic material. In this paper, evaluate the performance of the viscoelastic damper through the experiment.

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A. Shanab;Norhan A. Mohamed;Mohamed A. Eltaher;Alaa A. Abdelrahman
    • Advances in nano research
    • /
    • 제14권1호
    • /
    • pp.45-65
    • /
    • 2023
  • This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

전기적-기계적 수동감쇠기를 이용한 빔의 진동제어 (Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System)

  • 박철휴;안상준;박현철
    • 한국소음진동공학회논문집
    • /
    • 제13권8호
    • /
    • pp.651-657
    • /
    • 2003
  • A new mechanical-electrical hybrid passive damping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the nitration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model Is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

굽힘진동 감쇠를 위한 점탄성 적층보의 최적 설계 (Optimum Design of Viscoelastic Layered Beam to Minimize Flexural Vibration)

  • 김사수;조대승;이민우
    • 대한조선학회논문집
    • /
    • 제36권1호
    • /
    • pp.90-98
    • /
    • 1999
  • 감쇠가 적은 금속 구조물의 공진에 의한 진동과 소음을 제어하기 위해 고무, 아스팔트 계열 등의 점탄성 물질이 다양하게 사용되고 있다. 일반적으로 점탄성재료를 이용한 감쇠처리는 점탄성재료의 하부를 모재인 금속층에 취부하고 점탄성재료의 상부를 구속층으로 적층하는 방법을 적용한다. 구속감쇠층이 취부된 구조물의 감쇠 및 강성 특성은 온도와 주파수뿐만 아니라 각 층의 두께에 따라 크게 달라진다. 따라서 구조물을 경량화하고 감쇠처리 효과를 극대화하기 위해서는 점탄성층과 구속층 두께의 최적설계가 매우 중요하다. 본 연구에서는 구속감쇠층을 가진 보의 점탄성층과 구속층의 두께 변화에 따른 손실계수의 변화를 면밀히 검토하고, 이를 토대로 지정된 손실계수를 가지되 감쇠층과 구속층의 최소두께를 결정하는 방법을 제시하였다. 제시된 방법의 타당성은 수치실험적 방법으로 검증하였다.

  • PDF

Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core

  • Assie, Amr;Akbas, Seref D.;Kabeel, Abdallah M.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.79-90
    • /
    • 2022
  • In this study, the dynamic behavior of functionally graded layered deep beams with viscoelastic core is investigated including the porosity effect. The material properties of functionally graded layers are assumed to vary continuously through thickness direction according to the power-law function. To investigate porosity effect in functionally graded layers, three different distribution models are considered. The viscoelastically cored deep beam is exposed to harmonic sinusoidal load. The composite beam is modeled based on plane stress assumption. The dynamic equations of motion of the composite beam are derived based on the Hamilton principle. Within the framework of the finite element method (FEM), 2D twelve -node plane element is exploited to discretize the space domain. The discretized finite element model is solved using the Newmark average acceleration technique. The validity of the developed procedure is demonstrated by comparing the obtained results and good agreement is detected. Parametric studies are conducted to demonstrate the applicability of the developed methodology to study and analyze the dynamic response of viscoelastically cored porous functionally graded deep beams. Effects of viscoelastic parameter, porosity parameter, graduation index on the dynamic behavior of porous functionally graded deep beams with viscoelastic core are investigated and discussed. Material damping and porosity have a significant effect on the forced vibration response under harmonic excitation force. Increasing the material viscosity parameters results in decreasing the vibrational amplitudes and increasing the vibration time period due to increasing damping effect. Obtained results are supportive for the design and manufacturing of such type of composite beam structures.

압전형 센서/액추에이터를 이용한 진동구조물의 능동-수동제어 (Active-passive control of flexible sturctures using piezoelectric sensor/actuator)

  • 고병식
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.313-325
    • /
    • 1995
  • Two active/passive vibration dampers were designed to control a cantilever beam first mode of vibration. The active element was a piezoelectric polymer, polyvinlidene fluoride (PVDF). The passive damping was provided by the application of a viscoelastic layer on the surface of the steel beam. Two substantially different damper configurations were designed and tested. One damper consisted of a piezoelectric actuator bonded to one face of the beam, with a viscoelastic layer applied to the other surface of the beam. The second one was composed of a layer viscoeastic layer with one surface bonded to the beam, and with other being constrained by nine piezoelectric actuators connected in parallel. A control law based on the sign of the angular velocity of the cantilever beam was implemented to control the beam first mode of vibration. The piezoelectric sensor output was digitally differentiated to obtain the transverse linear velocity, and its sign was used in the control algorith. Two dampers provided the system a damping increase of a factor of four for the first damper and three for the second damper. Both dampers were found to work well at low levels of vibration, suggesting that they can be used effectively to prevent resonant vibrations in flexible structure from initiating and building up.

  • PDF

점탄성 감쇠기를 설치한 강구조 건물의 강지진 하중에 의한 거동 연구 (Seismic Behavior of Steel Structure with Added Viscoelastic Dampers under Strong Earthquake Ground Motions)

  • 오순택
    • 대한토목학회논문집
    • /
    • 제13권2호
    • /
    • pp.111-120
    • /
    • 1993
  • 본 논문은 에너지 분산 장치의 일종인 점탄성 감쇠기를 설치한 건물의 거동에 관한 실험 및 해석적 연구이다. 점탄성 감쇠기는 강지진 하중에 의하여 건물에 발생한 과도한 진동을 감소시키는데 효과적이다, 모드 변형에너지법을 이용하여 감쇠기에 의해 증가된 등가구조감쇠를 성공적으로 예측할 수 있으며, 따라서 점탄성 감쇠기를 설치한 건물의 지진 응답이 일반적인 모드 해석기법을 이용한 수치 모형 해석에 의해 정확히 예측된다. 이러한 결과를 토대로, 점탄성 감쇠기를 설치한 건물에 대한 설계 방법을 제시한다. 이 설계 방법은 일반적인 건물의 설계에 감쇠비라는 설계 요소를 추가함으로써 가능해진다.

  • PDF

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer

  • Laib, Salaheddine;Meftah, Sid Ahmed;Youzera, Hadj;Ziane, Noureddine;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.253-268
    • /
    • 2021
  • The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.