• 제목/요약/키워드: Viscoelastic

검색결과 1,211건 처리시간 0.02초

열경화성 수지 재료를 이용한 광학 렌즈 제조공정에서 렌즈 변형에 대한 수축률이 영향에 관한 연구 (A Study on the Effect of Shrinkage on Lens Deformation in Optical Lens Manufacturing Process Using Thermosetting Resin Material)

  • 박시환
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.9-15
    • /
    • 2022
  • In order to reduce the manufacturing costs of the glass lens, it is necessary to manufacture a lens using a UV curable resin or a thermosetting resin, which is a curable material, in order to replace a glass lens. In the case of forming a lens using a thermosetting material, it is necessary to form several lenses at once using the wafer-level lens manufacturing technologies due to the long curing time of the material. When a lens is manufactured using a curable material, an error in the shape of the lens due to the shrinkage of the material during the curing process is an important cause of defects. The major factors for these shape errors and deformations are the shrinkage and the change of mechanical properties in the process of changing from a liquid material during curing to a solid state after complete curing. Therefore, it is necessary to understand the curing process of the material and to examine the shrinkage rate and change of physical properties according to the degree cure. In addition, it is necessary to proceed with CAE for lens molding using these and to review problems in lens manufacturing in advance. In this study, the viscoelastic properties of the material were measured during the curing process using a rheometer. Using the results, Rheological investigation of cure kinetics was performed. At the same time, The shrinkage of the material was measured and simple mathematical models were created. And using the results, the molding process of a single lens was analyzed using Comsol, a commercial S/W. In addition, the experiment was conducted to compare and verify the CAE results. As a result, it was confirmed that the shrinkage rate of the material had a great influence on the shape precision of the final product.

열성형 공정에서 발생하는 필름의 잔류응력 및 스프링 백에 관한 연구 (A study on the residual stress and spring back of thermoformed films)

  • 박두용;박동현;이호상
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2022
  • Thermoforming is a plastic manufacturing process that applies a force to stretch a film of heated thermoplastic material over an engineered mold to create a 3-dimensional shape. After forming, the shaped part can then be trimmed and finished to specification to meet an end-user's requirements. The process and thermoplastic materials are extremely versatile and can be utilized to manufacture parts for a very wide range of applications. In this study, based on K-BKZ nonlinear viscoelastic model, thermoforming process analysis was performed for an interior room-lamp. The predicted thickness was minimum at the corner of a molded film, and maximum at the center of the bottom. By using the Taguchi method of design of experiments, the effects of process conditions on residual stresses were investigated. The dominant factors were the liner thickness and the film heating time. As the thickness of the liner increased, the residual stress decreased. And it was found that the residual stress decreased significantly when the film heating temperature was higher than the glass transition temperature. A thermoforming mold and a trimming mold were manufactured, and the spring back was investigated through experiments. The dominant factors were film heating time, liner thickness, and lower mold temperature. As the film heating time and liner thickness increased, the spring back decreased. In addition, it was found that the spring back decreased as the lower mold temperature increased.

반응압출 공정으로 개질된 PLA 나노복합체의 유변학적 및 열적 물성 (Rheological and Thermal Properties of PLA Nano-composite Modified by Reactive Extrusion)

  • 강경수;김봉식;신부영
    • 청정기술
    • /
    • 제15권2호
    • /
    • pp.102-108
    • /
    • 2009
  • 본 연구에서는 폴리락틱산(PLA)의 용융강도를 향상시키기 위하여 몬모릴로나이트(MMT), 기능성 단량체인 글리시딜 메타크릴레이트(GMA)와 반응개시제를 함유한 PLA를 이축압출기로 개질한 후 열적 특성과 및 유변학적 특성을 조사하였으며, X선 회절장치(XRD) 및 투과전자현미경(TEM) 사진을 이용하여 MMT의 분산도를 측정하였다. 이 나노복합체의 $T_g$는 GMA 함량이 증가하면 감소하는 경향을 보였으나, MMT의 양에는 크게 영향을 받지 않았다. 또한 표면분석에 의해 MMT의 양이 증가할수록 박리형(exfoliation) 보다는 삽입형(intercalation)에 가까운 나노복합체가 형성된 것을 확인하였다. 복합점도 및 저장탄성률은 MMT의 첨가에 의해 크게 증가되었다.

레시틴/디솔비톨/물 혼합물의 유변학적 성질 연구 (Investigation of Rheological Properties of Lecithin/D-sorbitol/Water Mixtures)

  • 추은애;김나현;강민석;이영민;이희영
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.247-251
    • /
    • 2023
  • 유기용매 상에서 레시틴은 양친매성 분자의 특성 때문에 구형의 역 마이셀로 자가조립된다. 이러한 레시틴 용액에 D-sorbitol, 물과 같은 첨가제가 들어갈 경우 레시틴의 분자 형태의 변화를 유도하여 역 실린더형 마이셀로의 변환을 이끌게 된다. 이번 연구에서는, 레시틴과 D-sorbitol/물의 혼합물을 이용하여 샘플의 유변학적 변화를 관찰한다. 또한, 이러한 유변학적 변화와 용액 내부의 자가조립된 나노구조체와의 연관성을 확인하기 위해 엑스선 소각 산란분석기 (SAXS)를 이용하여 나노구조체의 형태 및 크기 등을 확인한다. 이러한 혼합물을 이용하여 제조된 점도가 높고 점탄성을 지닌 유체는 약물전달, 식품젤 등의 분야에 활용이 가능할 것으로 기대된다.

Rheological, Physical and Sensory Evaluation of Low-Fat Cupuassu Goat Milk Yogurts Supplemented with Fat Replacer

  • Costa, Marion P.;Rosario, Anisio Iuri L.S.;Silva, Vitor L.M.;Vieira, Carla P.;Conte-Junior, Carlos A.
    • 한국축산식품학회지
    • /
    • 제42권2호
    • /
    • pp.210-224
    • /
    • 2022
  • The use of skim milk is a strategy to increase goat milk yogurt acceptability. However, it can negatively affect yogurt rheology because fat plays a vital role in dairy structural integrity. Thus, this study aimed to investigate the effects of fat replacers on the rheological, physical, and sensory parameters of low-fat cupuassu goat milk yogurts during refrigerated storage (28 days). Five goat milk yogurts formulations were carried out: whole yogurt (WY), skim yogurt (SY), skim yogurt with inulin (SIY), skim yogurt with maltodextrin (SMY), and skim yogurt with whey protein (SWY). Treatments were subjected to bacterial counts, chemical composition, pH, water holding capacity, instrumental color and texture, rheological and sensory analyses. All samples showed reducing pH values, water holding capacity, and L* and b* value during storage. Regarding texture, the firmness and consistency decreased during storage. On the other hand, the viscosity index significantly increased during refrigerated storage time. Moreover, all treatments exhibited viscoelastic behaviour. In addition, SIY and SMY showed the highest apparent viscosity. Furthermore, SIY, SMY, and SWY formulations exhibited positive sensory scores for appearance, color, aroma, texture, and viscosity. However, the overall acceptability and purchase intention did not differ statistically between WY and the fat-replacement treatments (SIY, SMY, and SWY). These results indicate that fat substitutes improved the quality of skimmed formulations. Thus, inulin and maltodextrin have the potential as functional fat replaces to produce low-fat goat milk yogurts.

시험도로 아스팔트 포장의 공용성 변화 분석 (Performance Evaluation of Asphalt Concrete Pavements at Korea Expressway Corporation Test Road)

  • 서영국;권순민
    • 대한토목학회논문집
    • /
    • 제28권1D호
    • /
    • pp.35-43
    • /
    • 2008
  • 본 연구는 지난 4년간 한국도로공사 시험도로 아스팔트 포장의 주요 손상인자의 정량화와 그 변화를 다루고 있다. 포장상태조사 장비인 ARAN(Automatic Road Analyzer)을 이용하여 준공 직후인 2002년 12월부터 2006년 10월까지 총 5차례에 걸쳐 아스팔트 전단면에 대해 노면상태를 측정하고 소성변형, 균열손상, 그리고 종단평탄성을 중심으로 그 결과를 분석하였다. 실내시험을 통해 시험도로의 아스팔트 혼합물의 온도와 하중 재하속도에 대한 선형점탄성 거동을 비교하고, 표층용 혼합물인 ASTM 19mm에 대해서는 동탄성계수에 미치는 공극률의 영향도 검토하였다. 일반 밀입도 표층 단면의 차륜부에서 추출한 시편의 공극률을 측정하여 시험도로 포장의 다짐도 변화를 추정하였으며 이를 바탕으로 다짐도-포장 손상의 관계를 검토하였다. 교통하중과 포장 손상과의 연관성 분석 결과 소성변형과 균열을 포함한 노면 손상의 증가는 교통하중이 재하되는 시기와 바로 일치하지는 않았으며 오히려 온도와 같은 환경에 더 영향을 받는 것으로 관측되었다. 반면에 노면 평탄성은 공용년수가 증가 하면서 교통하중에 민감하게 반응하였으며 환경인자와의 상관성은 매우 낮은 것으로 나타났다.

BNNT와 CNT의 강화효과에 대한 복합재 계면물성 관점의 고찰 (An Essay of the Reinforcing Effect of BNNT and CNT: A Perspective on Interfacial Properties)

  • 양승화
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.155-161
    • /
    • 2024
  • 질화붕소나노튜브와 탄소나노튜브는 가장 대표적인 1차원 나노구조체로, 기존의 금속 및 세라믹재료에 비해 매우 뛰어난 물성을 가지고 있음이 알려지면서 다기능성 경량복합재의 강화재로 가장 큰 주목을 받아왔다. 각각 저 차원 무기나노소재와 유기나노소재를 대표하는 이들 나노구조는 우열을 가리기 어려울 정도로 뛰어난 기계적강성과 강도 그리고 열전도 특성을 가지고 있다. 따라서 구조용 복합소재 및 방열 복합재 분야에서 이 두 나노튜브의 강화효과는 고분자기지와 혼합되면서 형성되는 재료 간 계면 물성이 어떠한가에 의해 크게 영향을 받게 된다. 본 논문에서는 질화붕소나노튜브와 탄소나노튜브가 복합재 내 기지와 형성하는 계면 물성에 대한 비교 연구 사례를 통해 두 나노튜브의 강화효과에 대해 고찰한다. 기계적특성을 좌우할 수 있는 계면에서의 하중전달 특성을 튜브의 인발거동과 분자모델링을 통한 상호작용 에너지를 통해 분석한 결과와 더불어, 나노튜브에 결함이 존재하는 경우 두 나노튜브가 보이게 되는 상반되는 계면특성변화에 대해 점탄성 거동을 예시로 하여 소개한다.

Effect of static and dynamic impedance functions on the parametric analysis of SSI system

  • Maroua Lagaguine;Badreddine Sbarta
    • Coupled systems mechanics
    • /
    • 제13권4호
    • /
    • pp.293-310
    • /
    • 2024
  • This paper investigates the dynamic response of structures during earthquakes and provides a clear understanding of soil-structure interaction phenomena. It analyses various parameters, comprising ground shear wave velocity and structure properties. The effect of soil impedance function form on the structural response of the system through the use of springs and dashpots with two frequency cases: independent and dependent frequencies. The superstructure and the ground were modeled linearly. Using the substructure method, two different approaches are used in this study. The first is an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. The second is a numerical analysis generated with 2D finite element modeling using ABAQUS software. The superstructure is represented as a SDOF system in all the SSI models assessed. This analysis establishes the key parameters affecting the soil-structure interaction and their effects. The different results obtained from the analysis are compared for each studied case (frequency-independent and frequency-dependent impedance functions). The achieved results confirm the sensitivity of buildings to soil-structure interaction and highlight the various factors and effects, such as soil and structure properties, specifically the shear wave velocity, the height and mass of the structure. Excitation frequency, and the foundation anchoring height, also has a significant impact on the fundamental parameters and the response of the coupled system at the same time. On the other hand, it have been demonstrated that the impedance function forms play a critical role in the accurate evaluation of structural behavior during seismic excitation. As a result, the evaluation of SSI effects on structural response must take into account the dynamic properties of the structure and soil accordingly.

Artificial intelligence design for dependence of size surface effects on advanced nanoplates through theoretical framework

  • Na Tang;Canlin Zhang;Zh. Yuan;A. Yvaz
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.621-626
    • /
    • 2024
  • The work researched the application of artificial intelligence to the design and analysis of advanced nanoplates, with a particular emphasis on size and surface effects. Employing an integrated theoretical framework, this study developed a more accurate model of complex nanoplate behavior. The following analysis considers nanoplates embedded in a Pasternak viscoelastic fractional foundation and represents the important step in understanding how nanoscale structures may respond under dynamic loads. Surface effects, significant for nanoscale, are included through the Gurtin-Murdoch theory in order to better describe the influence of surface stresses on the overall behavior of nanoplates. In the present analysis, the modified couple stress theory is utilized to capture the size-dependent behavior of nanoplates, while the Kelvin-Voigt model has been incorporated to realistically simulate the structural damping and energy dissipation. This paper will take a holistic approach in using sinusoidal shear deformation theory for the accurate replication of complex interactions within the nano-structure system. Addressing different aspectsof the dynamic behavior by considering the length scale parameter of the material, this work aims at establishing which one of the factors imposes the most influence on the nanostructure response. Besides, the surface stresses that become increasingly critical in nanoscale dimensions are considered in depth. AI algorithms subsequently improve the prediction of the mechanical response by incorporating other phenomena, including surface energy, material inhomogeneity, and size-dependent properties. In these AI- enhanced solutions, the improvement of precision becomes considerable compared to the classical solution methods and hence offers new insights into the mechanical performance of nanoplates when applied in nanotechnology and materials science.

수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究) (Mechanical and Rheological Properties of Rice Plant)

  • 허윤근;차균도
    • 농업과학연구
    • /
    • 제14권1호
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF