• 제목/요약/키워드: Viscoelastic

검색결과 1,211건 처리시간 0.02초

Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions

  • Daemi, Hossein;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.319-330
    • /
    • 2020
  • This paper investigates the free vibrations of cylindrical shells made of time-dependent materials for different viscoelastic models under various boundary conditions. During the extraction of equations, the displacement field is estimated through the first-order shear deformation theory taking into account the transverse normal strain effect. The constitutive equations follow Hooke's Law, and the kinematic relations are linear. The assumption of axisymmetric is included in the problem. The governing equations of thick viscoelastic cylindrical shell are determined for Maxwell, Kelvin-Voigt and the first and second types of Zener's models based on Hamilton's principle. The motion equations involve four coupled partial differential equations and an analytical method based on the elementary theory of differential equations is used for its solution. Relying on the results, the natural frequencies and mode shapes of viscoelastic shells are identified. Conducting a parametric study, we examine the effects of geometric and mechanical properties and boundary conditions, as well as the effect of transverse normal strain on natural frequencies. The results in this paper are compared against the results obtained from the finite elements analysis. The results suggest that solutions achieved from the two methods are ideally consistent in a special range.

점탄성 원통의 모드 I 균열 해석 (Numerical Analysis of Viscoelastic Cylinders with Mode I Cracks)

  • 심우진;오근
    • 한국전산구조공학회논문집
    • /
    • 제19권3호
    • /
    • pp.259-269
    • /
    • 2006
  • 원환균열과 원주균열을 지닌 축대칭 선형 점탄성 중실축과 중공축이 외력을 받을 때 파괴역학 변수로서 응력확대계수, 에너지방출률 그리고 균열개구변위의 수치해를 유한요소해법을 이용하여 구한다. 균열선단에서는 응력의 특이성을 지닌 1/4절점 삼각형 특이요소가 사용된다. 또한 수치해를 비교 검증하기 위해 탄성-점탄성 상응원리를 이용하여 선형파괴역학의 탄성해들로부터 점탄성 이론해가 유도 제시된다. 해석에 사용되는 점탄성 물성은 체적변형은 탄성적이고 전단변형은 표준선형고체처럼 거동한다고 가정한다. 제시된 수치해법과 이론해는 축대칭 점탄성 거동 연구에 중요한 자료가 된다.

Mesoscale modeling of the temperature-dependent viscoelastic behavior of a Bitumen-Bound Gravels

  • Sow, Libasse;Bernard, Fabrice;Kamali-Bernard, Siham;Kebe, Cheikh Mouhamed Fadel
    • Coupled systems mechanics
    • /
    • 제7권5호
    • /
    • pp.509-524
    • /
    • 2018
  • A hierarchical multi-scale modeling strategy devoted to the study of a Bitumen-Bound Gravel (BBG) is presented in this paper. More precisely, the paper investigates the temperature-dependent linear viscoelastic of the material when submitted to low deformations levels and moderate number of cycles. In such a hierarchical approach, 3D digital Representative Elementary Volumes are built and the outcomes at a scale (here, the sub-mesoscale) are used as input data at the next higher scale (here, the mesoscale). The viscoelastic behavior of the bituminous phases at each scale is taken into account by means of a generalized Maxwell model: the bulk part of the behavior is separated from the deviatoric one and bulk and shear moduli are expanded into Prony series. Furthermore, the viscoelastic phases are considered to be thermorheologically simple: time and temperature are not independent. This behavior is reproduced by the Williams-Landel-Ferry law. By means of the FE simulations of stress relaxation tests, the parameters of the various features of this temperature-dependent viscoelastic behavior are identified.

Linear viscoelastic behavior of acrylonitrile-butadiene-styrene(ABS) polymers in the melt: Interpretation of data with a linear viscoelastic model of matrix/core-shell modifier polymer blends

  • Park, Joong-Hwan;Ryu, Jong-Hoon;Kim, Sang-Yong
    • Korea-Australia Rheology Journal
    • /
    • 제12권2호
    • /
    • pp.135-141
    • /
    • 2000
  • The linear viscoelastic behavior of acrylonitrile-butadiene-styrene (ABS) polymers with different rubber content has been investigated in the frame of a linear viscoelastic model, which takes into account the inter-connectivity of the dispersed rubber particles. The model developed in our previous work has been shown to properly predict the low frequency plateau for the storage modulus, which is generally observed in polymer blends containing core-shell-type impact modifiers. In the present study, further experiments have been carried out on ABS polymers with different rubber content to verify the validity of our linear viscoelastic model. It has been found that our model describes quite properly the rheological behavior of ABS polymers with different rubber content, especially at low frequencies. The experimental data confirm that our model describes the rheological properties of rubber-modified thermoplastic polymers with strong adhesion at the particle/matrix interface more accurately than the Palierne model.

  • PDF

최적화 기법을 이용한 점탄성물질의 분수차 미분모델 물성계수 추정 (Identification of Fractional-derivative-model Parameters of Viscoelastic Materials Using an Optimization Technique)

  • 김선용;이두호
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1192-1200
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature. However, the identification procedure of the four-parameter is very time-consuming one. In this study a new identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured frequency response functions(FRF) coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment step. A numerical example shows that the proposed method is useful in identifying the viscoelastic material parameters of fractional derivative model.

Free vibration behavior of viscoelastic annular plates using first order shear deformation theory

  • Moshir, Saeed Khadem;Eipakchi, Hamidreza;Sohani, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.607-618
    • /
    • 2017
  • In this paper, an analytical procedure based on the perturbation technique is presented to study the free vibrations of annular viscoelastic plates by considering the first order shear deformation theory as the displacement field. The viscoelastic properties obey the standard linear solid model. The equations of motion are extracted for small deflection assumption using the Hamilton's principle. These equations which are a system of partial differential equations with variable coefficients are solved analytically with the perturbation technique. By using a new variable change, the governing equations are converted to equations with constant coefficients which have the analytical solution and they are appropriate especially to study the sensitivity analysis. Also the natural frequencies are calculated using the classical plate theory and finite elements method. A parametric study is performed and the effects of geometry, material and boundary conditions are investigated on the vibrational behavior of the plate. The results show that the first order shear deformation theory results is more closer than to the finite elements with respect to the classical plate theory for viscoelastic plate. The more results are summarized in conclusion section.

점탄성재료가 결합된 PC 슬래브의 중량충격음 저감에 관한 수치해석 연구 (Numerical Study on the Control of Heavy-weight Floor Impact Noise for PC Slab Coupled with Viscoelastic Material)

  • 황재승;송진규;홍건호;박홍근
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.533-540
    • /
    • 2008
  • In this study, a new slab system where a part of precast slab is connected each other by viscoelastic material is proposed and numerical analysis is performed to evaluate the effect of the connection between the material and PC slab on the vibration and noise control. Substructuring is introduced to develop the equation of motion for the slab system. In addition, the optimal properties of viscoelastic material are investigated. For the performance evaluation of the new slab system, the sound power and acceleration responses of the slab are compared with those of two way slab and one way slab, respectively. Numerical analysis results show that the sound power of the new slab system can be reduced by viscoelastic material significantly.

점탄성 감쇠기 적용을 위한 실물크기 5층 건물의 가진 및 시스템 식별 (Excitation and System Identification of a Full-Scale Five-Story Structure for the Application of Viscoelastic Dampers)

  • 민경원;이상현;김진구;이영철;이승준;최현훈
    • 한국지진공학회논문집
    • /
    • 제7권3호
    • /
    • pp.1-7
    • /
    • 2003
  • 점탄성 감쇠기의 설계를 위한 자료를 얻기 위해 실물크기 5층 건물에 대해 가진과 시스템 식별을 수행하였다. 5층 바닥에 설치된 HWD는 건물을 움직이는 외부 가진력으로 작용하였고, 각 층의 응답을 측정하여 점탄성 감쇠기의 용량과 최적위치에 필요한 자료를 확보하였다. 고유진동수, 감쇠비, 모드와 같은 동적특성을 파악하기 위해 건물에 HMD로 조화하중과 백색잡음 하중을 주어 실험을 수행하였다. 동반논문에서는 건물의 층간에 설계된 점탄성 감쇠기를 설치한 후 응답 거동을 얻기 위한 실험 연구를 수행하였다.

Viscoelastic Fluid Flow in a Sudden Expansion Circular Channel as a Model for the Blood Flow Experiments

  • Pak, Bock-Choon;Kim, Cheol-Sang
    • 대한의용생체공학회:의공학회지
    • /
    • 제11권2호
    • /
    • pp.233-242
    • /
    • 1990
  • In the current flow visualization studies, the role of non-Newtonian characteristics (such as shearra to dependent viscosity and viscoelasticity ) on flow behavior across the sudden ex- pansion step in a circular pipe as a model for blood flow experiments is investigated over a wide range of Reynolds numbers. The expansion ratios tested are 2.000 and 2.667 and the range of the Reynolds number covered in the current flow visualization tests are 10~35, 000 based on the inlet. diameter. The reattachment longuEs for the viscoelastic fluids in the lami- nar flow regime are found to be much shorter than those for the Newtonian fluid. In addition it decreases significantly with increasing concentration of viscoelastic fluids at the same Reynolds number. However, in the turbulent flow regime, the reattachment length for the viscoelastic fluids Is two or three times longer than those for water, and gradually increases with increasing concentration of viscoelastic solutions, resulting In 25 and 28 step-height dis- tances for 500 and 1, 000 lpm ployacrylamide solutions, respectively. This may be due to the fact that the elasticity in pobacrylamide solutions suppresses the eddy motion and controls separation and reattachment behavior in the sudden expansion pips flow.

  • PDF

초음파 측정법에 의한 아스팔트 세멘트의 점탄성 특성 평가 (Viscoelastic Property Evaluation of Asphalt Cement by Ultrasonic Measurement)

  • 이재학
    • 비파괴검사학회지
    • /
    • 제20권5호
    • /
    • pp.402-411
    • /
    • 2000
  • 이 연구에서는 점탄성 재료중의 하나인 아스팔트 세멘트의 점탄성 특성을 초음파를 이용하여 측정하는 방법에 대하여 고찰하였다. 2.25MHz의 주파수에서 $-20^{\circ}C$부터 $60^{\circ}C$까지의 온도변화에 따른 파속도와 감쇠를 측정한 후, 선형 점탄성 이론에 근거하여 저장 및 손실 종탄성율, 손실 탄젠트, 저장 및 손실 종컴플라이언스와 같은 물성변화를 구하였다. Maxwell과 Voigt-Kelvin 점탄성 모델을 이용하여 응력완화 및 크리프 거동과 점도의 변화도 예측하였다. 또한 중첩원리와 이동인자의 타당성을 문헌에 보고된 결과와 비교함으로써 입증할 수 있었다.

  • PDF