• Title/Summary/Keyword: Visco-elastic properties

Search Result 45, Processing Time 0.025 seconds

A STUDY ON THE VISCO-ELASTIC PROPERTIES OF FOUR CURRENTLY USED TISSUE CONDITIONERS (수종의 조직 양화재에서 탄성 변형과 복원에 관한 연구)

  • Choi Sung-Ho;Shim June-Sung;Moon Hong-Seok;Chung Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.35-47
    • /
    • 2003
  • The dimensional stability of tissue conditioners characterizes the ability of the materials to yield accurate functional impressions of oral mucosa. This study evaluated the viscoelastic property and the linear dimensional changes with the factor of time and thickness of tissue conditioners ($COE-COMFORT^{TM}$, Visco-gel. $COE-SOFT^{TM}$, Soft-Liner). The thickness of these materials were changed (1.5mm, 3.0mm) and the percentage changes in dimension were measured at 1h, 12h, 24h, 36h, 3day, 7day after specimen preparation. From the results large differences appear between the various tissue conditioners. The results suggest that the period recommended for forming functional impression would be 2-3days after insertion in the mouth. in addition. it is important to select tissue conditioners suitable for functional impression because of the wide range of dimensional stability among the materials.

Micro/macro properties of geomaterials: a homogenization method for viscoelastic problem

  • Ichikawa, Yasuaki;Wang, Jianguo;Jeong, Gyo-Cheol
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.631-644
    • /
    • 1996
  • Geomaterials such as soil and rock are composed of discrete elements of microstructures with different grains and microcracks. The studies of these microstructures are of increasing interest in geophysics and geotechnical engineering relating to underground space development We first show experimental results undertaken for direct observation of microcrack initiation and propagation by using a newly developed experimental system, and next a homogenization method for treating a viscoelastic behavior of a polycrystalline rock.

Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation

  • Kargar, Javad;Arani, Ali Ghorbanpour;Arshid, Ehsan;Rahaghi, Mohsen Irani
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.557-572
    • /
    • 2021
  • The current study considers free vibration of the spherical panel with magnetorheological (MR) fluids core and magneto-electro-elastic face sheets. The panel is subjected to electro-magnetic loads and also is located on an orthotropic visco-Pasternak elastic foundation. To describe the displacement components of the structure, the first-order shear deformation theory (FSDT) is used and the motion equations are extracted by employing Hamilton's principle. To solve the motion differential equations, Navier's method is selected as an exact analytical solution for simply supported boundary conditions. Effect of the most important parameters such as magnetic field intensity, loss factor, multi-physical loads, types of an elastic medium, geometrical properties of the panel, and also different material types for the face sheets on the results is considered and discussed in details. The outcomes of the present work may be used to design more efficient smart structures such as sensors and actuators.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

A Study on Rheological Behavior of Korean Straight Asphalts (국내 스트레이트 아스팔트의 거동 특성 연구)

  • Kim, Nam-Ho;Hwang, Sung-Do;Park, Young-Cheol
    • International Journal of Highway Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-133
    • /
    • 1999
  • This study was based on the evaluation of 9 asphalts that were produced in five major Korean refineries. The study was concentrated to identify the problems of the current asphalt specification (KS M 2201) and to determine the ranges of visco-elastic asphalt behavior. As a conventional asphalt property. asphalt penetration, ring and ball(R&B) softening point, asphalt viscosity, and flash point of asphalt were measured. Also Dynamic Shear Rheometer (DSR) were used to evaluate visco-elastic properties of asphalts in the $-20^{\circ}C$ through $30^{\circ}C$ temperature range. These properties before and after the short-term (RTFO) and long-term (PAV) aging were compared and analyzed to achieve the research objectives. The conclusion from this study can be summarized by the followings. The low temperature rheological behavior of all the straight asphalt from five major Korean refineries is similar regardless of asphalt grade. In the mean while, the rheological behavior at high and intermediate temperature of Korean straight asphalt varies depending on asphalt grade.

  • PDF

Visco-Elastic Properties of Glass Fiber Manufactured by Slag Material (슬래그 원료를 사용해서 제조된 유리섬유의 점탄성 특성)

  • Lee, Ji-Sun;Kim, Sun-Woog;Ra, Yong-Ho;Lee, Youngjin;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.477-482
    • /
    • 2019
  • This study investigated the influence of the viscoelastic property of slag when producing glass fiber, MFS631 with 60% of manganese slag, 30% of steel slag, and 10% of silica stone. To fabricate the MFS631 glass bulk, slag materials were placed in an alumina crucible, melted at $1,550^{\circ}C$ for 2 h, and then annealed at $600^{\circ}C$ for 2 h. It was found that glass is non-crystalline through X-ray diffraction analysis. MFS631 fiber was produced at speed in the range of 100~300 rpm at $1,150^{\circ}C$. The loss modulus (G") and storage modulus (G') of the produced glass fiber were evaluated at high temperatures. G' and G" of MFS631 were greater than $893^{\circ}C$, and the modulus value was 136,860 pa. This is similar to the results of a general E-glass fiber graph. Therefore, it was concluded that its spinnability is similar to that of E-glass fiber; therefore, it can be commercialized.

Mechanical Properties of Rice Plants Under the Transverse Loading -Creep and Recovery Behavior- (측방향하중(側方向荷重)에 의한 벼줄기의 역학적특성(力學的特性)에 관한 연구(硏究)(II) -크리이프 및 회복 거동-)

  • Huh, Yun Kun
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.233-241
    • /
    • 1996
  • The mechanical properties of biological materials depend on numerous factors. The majority of these relationships are still unknown today, especially with regard to their quantitative characteristics. The reason is that biological materials constitute biomechanical systems of very complex construction, whose behavior cannot be characterized by simple physical constants, as for example can that of engineering materials. The objectives of this investigation were to determine the compression creep and recovery properties of rice stalks at various levels of applied load The compression creep and recovery behavior of the rice stalk could be predicted precisely by rheological model which approached closely to the measured values. But the coefficients of the Burgers recovery model were different from those of the creep model. The Steady state creep behavior occurred at the higher level of force and the logarithmic creep behavior occurred at the lower level of force. The mechanical model being expected the creep behavior in relation with the level of applied load, which was well explained that the rice stalk might be visco-elastic material.

  • PDF

Study on the Aspheric Glass Lens Forming Simulation in the Progressive GMP process (순차이송 GMP 공정에서의 비구면 유리렌즈 성형 해석에 관한 연구)

  • Chang, S.H.;Gang, J.J.;Shin, K.H.;Jung, W.C.;Heo, Y.M.;Jung, T.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.539-542
    • /
    • 2008
  • Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Ty (yielding point) for forming glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. Before this study, as a fundamental study to develop forming conditions for progressive GMP process, compression, strain relaxation and thermal conductivity tests were carried out to obtain the visco-rigid plastic, the visco-elastic and thermal properties of K-PBK40 which is newly developed and applied for precision molding glass material, In this study, using the experimental results we obtained, a glass lens forming simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming.

  • PDF

Seismic mitigation of an existing building by connecting to a base-isolated building with visco-elastic dampers

  • Yang, Zhidong;Lam, Eddie S.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study investigates the feasibility of retrofitting an existing building by connecting the existing building to a new building using connecting dampers. The new building is base-isolated and viscoelastic dampers are assigned as connecting dampers. Scaled models are tested under three different earthquake records using a shaking table. The existing building and the new building are 9 and 8 stories respectively. The existing building model shows more than 3% increase in damping ratio. The maximum dynamic responses and the root mean square responses of the existing building model to earthquakes are substantially reduced by at least 20% and 59% respectively. Further, numerical models are developed by conducting time-history analysis to predict the performance of the proposed seismic mitigation system. The predictions agree well with the test results. Numerical simulations are carried out to optimize the properties of connecting dampers and base isolators. It is demonstrated that more than 50% of the peak responses can be reduced by properly adjusting the properties of connecting dampers and base isolators.

Rheological and Pasting Properties of Naked Barley Flour as Modified by Guar, Xanthan, and Locust Bean Gums

  • Yoon, Sung-Jin;Lee, Youngseung;Yoo, Byoungseung
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.367-372
    • /
    • 2016
  • To understand the effects of adding different gums (guar, xanthan, and locust bean gums) on naked barley flour (NBF), the rheological and pasting properties of NBF-gum mixtures were measured at different gum concentrations (0, 0.3, and 0.6% w/w). Steady shear rheological properties were determined by rheological parameters for power law and Casson models. All samples showed a clear trend of shear-thinning behavior (n=0.16~0.48) and had a non-Newtonian nature with yield stress. Consistency index, apparent viscosity, and yield stress values increased with an increase in gum concentration. Storage modulus values were more predominant than loss modulus values with all concentrations of gums. There is a more pronounced synergistic effect of elastic properties of NBF in the presence of xanthan gum. Rapid visco analyser pasting properties showed that the addition of gums resulted in a significant increase in the peak, breakdown, setback, and final viscosities, whereas the pasting temperature decreased.