• Title/Summary/Keyword: Visco-elastic model

Search Result 82, Processing Time 0.019 seconds

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Aeroelastic forces on yawed circular cylinders: quasi-steady modeling and aerodynamic instability

  • Carassale, Luigi;Freda, Andrea;Piccardo, Giuseppe
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.373-388
    • /
    • 2005
  • Quasi-steady approaches have been often adopted to model wind forces on moving cylinders in cross-flow and to study instability conditions of rigid cylinders supported by visco-elastic devices. Recently, much attention has been devoted to the experimental study of inclined and/or yawed circular cylinders detecting dynamical phenomena such as galloping-like instability, but, at the present state-of-the-art, no mathematical model is able to recognize or predict satisfactorily this behaviour. The present paper presents a generalization of the quasi-steady approach for the definition of the flow-induced forces on yawed and inclined circular cylinders. The proposed model is able to replicate experimental behaviour and to predict the galloping instability observed during a series of recent wind-tunnel tests.

Changing Wheat Quality with the Modification of Storage Protein Structure

  • Tamas, Laszlo;Bekes, Ferenc;Morrell, Matthew K.;Appels, Rudi
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • The visco-elastic properties of gluten are major determinants of the processing properties of doughs. These visco-elastic properties are strongly influenced by the ratio of monomeric and polymeric proteins and the size distribution of the polymeric proteins, which make up the gluten fraction of the dough. Recent studies have revealed that other features, such as the number of the cysteine residues of the HMW-GS, also play an important role in determining the functional characteristics. To modify the processing properties at molecular level, the relationship between the structure of molecules and dough properties has to be understood. In order to explore the relationships between individual proteins and dough properties, we have developed procedures for incorporating bacterially expressed proteins into doughs, and measuring their functional properties in small-scale equipment. A major problem in investigating the structure/function relationships of individual seed storage proteins is to obtain sufficient amounts of pure polypeptides from the complex families of proteins expressed in the endosperm. Therefore, we have established a simplified model system in which we produce specific protein genes through bacterial expression and test their functional properties in smallscale apparatus after incorporation into base flour. An S poor protein gene has been chosen as a template gene. This template gene has been modified using standard recombinant DNA techniques in order to test the effects of varying the number and position of cysteine residues, and the size of the protein. Doughs have been mixed in small scale apparatus and characterized with respect to their polymeric composition and their functional properties, including dough mixing, extensibility and small scale bating. We conclude that dough characteristics can be manipulated in a predictable manner by altering the cysteine residues and the size of high molecular weight glutenins.

  • PDF

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

Effects of Distributed Load on the Static Behaviour of tile Parabolic Arches (분포하중이 포물선 아치의 정적 거동에 미치는 영향)

  • 박근수;조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.78-85
    • /
    • 2003
  • This study aims to investigate the effect of partially distributed loads on the static behavior of parabolic arches by using the elastic-plastic finite element model. For this purpose, the vertical, the radial, and the anti-symmetric load cases are considered, and the ratio of loading range and arch span is increased from 20% to 100%. Also, the elastic-visco-plastic analysis has been carried out to estimate the elapse time to reach the stable state of arches when the ultimate load obtained by the finite element analysis is applied. It is noted that the ultimate load carrying capacities of parabolic arches are 6.929 tf/$m^2$ for the radial load case, and 8.057 tf/$m^2$ for the vertical load case. On the other hand, the ultimate load is drastically reduced as 2.659 tf/$m^2$ for the anti-symmetric load case. It is also shown that the maximum ultimate load occurs at the full ranging distributed load, however, the minimum ultimate loads of the radial and vortical load cases are obtained by 2.336 tf/$m^2$, 2.256 tf/$m^2$, respectively, when the partially distributed load is applied at the 40% range of full arch span.

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (동적응답을 최소화하는 비구속형 제진보의 제진부위 최적설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.656-661
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beams is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. The loss factors of partially covered unconstrained beam are calculated by the modal strain energy method. Vibration responses are calculated by using the modal superposition method, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in minimizing vibration responses with unconstrained damping layer treatment.

  • PDF

Analysis of Offshore Tubulars Subjected to Collision Impacts Using a Spring-Beam Model (스프링-보 모형을 이용한 해양구조물 원통부재의 충돌 해석)

  • 조상래;권종식
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.22-35
    • /
    • 1995
  • A simplified numerical procedure have proposed to trace the dynamic behaviour of offshore tubulars subjected to lateral collision impacts. The local denting and overall bending deformation of the struck tubular are represented by a non-linear spring and an elastic visco-plastic beam respectively. In this method a temporal finite difference method and a spacial finite element method are employed. Using this method various boundary conditions are able to considered and their effects on the extent of damage can be quantified. The extent of damage due to collision can be obtained as results of the dynamic analysis. The predictions using the proposed method have been correlated with existing test results and then the reliability of the procedure has been substantiated. The characteristics of the dynamic response of tubulars under lateral impacts are compared for simply supported roller and fixed end conditions and their effects on the extent of damage are specfied.

  • PDF

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계)

  • Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

Development of FE Analysis Scheme for Milli-Part Forming Using Grain and Grain Boundary Element (입자요소를 이용한 미세 박판 부품의 유한요소 해석 기법 개발)

  • 구태완;김동진;강범수
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.439-446
    • /
    • 2002
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. When scaling down a metal forming process, the dimensions of the workpiece decrease but the microstructure of the workpiece remains the similar. Since the dimensions of the workpiece are very small, the microstructure especially the grain size will play an important role in micro forming, which is called size effects. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for visco-elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • Lee, Doo-Ho;Hwang, Woo-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.938-946
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximizeloss factor using a numerical search method. The fractional derivative model can describe damping characteristics of viscoelastic damping materials accurately, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kelvin[RUK] equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are identified with ambient temperatures and thickness ratios of beam and damping layer by using a finite-difference-based steepest descent method.