• Title/Summary/Keyword: Visco-Rigid Plasticity

Search Result 11, Processing Time 0.018 seconds

A Study of Localization with Al7075 By Using Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 알루미늄 7075합금강의 국부화 현상에 대한 연구)

  • 이병섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.9-12
    • /
    • 2000
  • The importance of the role of plastic spin in the rate-dependent response of materials at large deformations is the main objective of this work. After a brief presentation of a general consitutive framework for visco-rigid plasticity at large strains an isotropic/kinematic hardening and a visco-rigid plastic model are used to analyze the stress-strain response under simple shear. A clear understanding of the role of plastic spin is achieved by obtaining numerical analyzed results for different stress values in which the plastic spin consititutive parameters interrelaste with the strain rate and other more conventional model constants, Especially this paper is concerned with introducing behaviors of Al7075

  • PDF

Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes (초소성 성형/확산접합 공정의 유한요소 해석)

  • 홍성석;김용환
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.37-46
    • /
    • 1996
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted by two-node line elements based on the membrane approximation for plane strain. Material behavior during SPF/DB of the integral structures having complicated shapes was investigated. The tying condition is employed for the analysis of inter-sheet contact problems. A movement of rib structure is successfully predicted during the forming.

  • PDF

Superplastic Forming /Diffusion Bonding Processes Design Using a Finite Element Method (유한요소법을 이용한 초소성 성형/확산접합 공정 설계)

  • 홍성석;이종수;김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.155-161
    • /
    • 1995
  • Superplastic forming/diffusion bonding(SPF/DB) processes are analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted using two-node line element based on membrane approximation for plane strain shapes. Material behavior during SPF/DB of the integral structures with complicated shapes are investigated. The tying condition is employed for the analysis inter-sheet contact problems. A movement of rib structure is successfully prodicted during the forming.

  • PDF

Study on the Aspheric Glass Lens Forming Simulation in the Progressive GMP process (순차이송 GMP 공정에서의 비구면 유리렌즈 성형 해석에 관한 연구)

  • Chang, S.H.;Gang, J.J.;Shin, K.H.;Jung, W.C.;Heo, Y.M.;Jung, T.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.539-542
    • /
    • 2008
  • Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Ty (yielding point) for forming glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. Before this study, as a fundamental study to develop forming conditions for progressive GMP process, compression, strain relaxation and thermal conductivity tests were carried out to obtain the visco-rigid plastic, the visco-elastic and thermal properties of K-PBK40 which is newly developed and applied for precision molding glass material, In this study, using the experimental results we obtained, a glass lens forming simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming.

  • PDF

3-D Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes with Consideration of Contact between Deformable Bodies (변형체간의 접촉을 고려한 3차원 초소성 성형/확산접합의 유한요소해석)

  • Kang, Yung-Kil;Song, Jae-Sun;Hong, Sung-Suk;Kim, Yong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Superplastic forming/diffusion bonding(SPF/DB) processes with inner contact were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The hierarchical search algorithm for the contact searching has been applied. The algorithms for contact force processing were designed to handle equally well contact between deformable bodies, as well as rigid bodies. The plate of three and four sheets for 3-D SPF/DB model are analyzed using the developed program. The validity for the analysis is verified by comparison between analysis, experiment and results in the literature.

Implementation of Polycrystal Model in Rigid Plastic Finite Element Method (강소성 유한요소법에서의 다결정 모델의 구현)

  • Kang, G.P.;Lee, K.;Kim, Y.H.;Shin, K.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.286-292
    • /
    • 2017
  • Magnesium alloy shows strong anisotropy and asymmetric behavior in tension and compression curve, especially at room temperature. These characteristics limit the application of finite element method (FEM) which is based on conventional continuum mechanics. To accurately predict the material behavior of magnesium alloy at microstructural level, a methodology of fully coupled multiscale simulation is presented and a crystal plasticity model as a constitutive equation in the simulation of metal forming process is introduced in this study. The existing constitutive equation for rigid plastic FEM is modified to accommodate deviatoric stress component and its derivatives with respect to strain rate components. Viscoplastic self-consistent (VPSC) polycrystal model was selected as a constitutive model because it was regarded as the most robust model compared to Taylor model or Sachs model. Stiffness matrix and load vector were derived based on the new approach and implemented into $DEFORM^{TM}-3D$ via a user subroutine handling stiffness matrix at an elemental level. The application to extrusion and rolling process of pure magnesium is presented in this study to assess the validity of the proposed multiscale process.

Analysis of 3-D Superplastic Forming/Diffusion Bonding Process Using a Hierarchical Contact Searching Method(I) (계층적 접촉 탐색방법을 이용한 3-D 초소성 성형/확산접합의 공정설계(I))

  • Kang, Y.K.;Song, J.S.;Hong, S.S.;Kwon, Y.N.;Lee, J.H.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.138-143
    • /
    • 2007
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The coulomb friction law is used for interface friction between tool and material. Pressure-time relationship for a given optimal strain rate is calculated by stress and pressure values at the previous iteration step. In order to improve the contact searching, hierarchical search algorithm has been applied and implemented into the code. Various geometries including sandwich panel and 3 sheet shape for 3-D SPF/DB model are analyzed using the developed program. The validity fer the analysis is verified by comparison between analysis and results in the literature.

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of Die Steels (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • Jeong H. S.;Cho J. R.;Cha D. J.;Bae Y. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.131-135
    • /
    • 2001
  • Evaluation of microstructural changes during open die forging of heavy ingots is important for process control. The objective of the control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects md to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent processes of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

Study on the relationship between Plastic Deformation and Crystal Grain Change in Warm Forging (온간 단조기에서의 소성변형과 결정입자 변화와의 관계)

  • 이해영;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.100-123
    • /
    • 1995
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM100 carbon steel is studied. If the carbon steel is deformed in warm forging temperature (about recrystallization range), the crystal grain and cementite of the internal part are changed, so material properties are changed. Some experimental values, such as the elliptic degree of cementite, the grain size of cementitie and ferrite grain size, are investigated. When the plastic deformation proceeds, the elliptic degree of cementite becomes large, the grain size of cementite particle is small, and the size of ferrite grain appears fine by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging is calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result. At effective strain 0.3 dynamic recovery and dynamic recrystallization begin, over 2.5 the organization of material has better quality that is suitable for the following cold forming.

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of a Die Steel (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • 정호승;조종래;차도진;배원병
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.338-346
    • /
    • 2001
  • Evaluation of microstructural changes is important for process control during open die forging of heavy ingots. The control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects and to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent Precesses of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF