• Title/Summary/Keyword: Visco-Elastic material

Search Result 54, Processing Time 0.021 seconds

Reduction of Non-Repeatable Runount in a HDD Using Visco-elastic Damping Material (점탄성 댐핑 물질을 이용한 하드 디스크 드라이브의 NRRO저감)

  • 장건희;홍선주;한재혁;김동균
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1234-1239
    • /
    • 1999
  • This research investigates the characteristicsw of NRRO in a 2.5" HDD by using FEM, modal testing and runout analysis, and reduces NRRO using visco-elastic damping material. Most frequency components of NRRO are generated by the defects of ball and rotating race, and they can be determined by the kinematic analysis of ball bearing. It also proposes the novel design of a spindle motor that can reduce NRRO effectively by inserting the visco-elastic damping material to one of the transmission path of NRRO, i.e., where the strain energy is highly concentrate. By this technique, NRRO is reduced by 27%. 27%.

  • PDF

Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM

  • Abdulrazzaq, Mohammed Abdulraoof;Muhammad, Ahmed K.;Kadhim, Zeyad D.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.201-217
    • /
    • 2020
  • This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT) for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two scale factors are included in the formulation for describing size influences based on NSGT. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is presented based on three factors including a viscous layer and two elastic layers.The governing equations achieved by Hamilton's principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity, temperature rise,scale factors and viscous damping.

Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions

  • Mimoun Bennedjadi;Salem Mohammed Aldosari;Abdelbaki Chikh;Abdelhakim Kaci;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdeldjebbar Tounsi;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.159-177
    • /
    • 2023
  • In the present work, a simple and refined shear deformation theory is used to analyze the effect of visco-elastic foundation on the buckling response of exponentially-gradient sandwich plates under various boundary conditions. The proposed theory includes indeterminate integral variables kinematic with only four generalized parameters, in which no shear correction factor is used. The visco-Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The four governing equations for FGM sandwich plates are derived by employing principle of virtual work. To solve the buckling problem, Galerkin's approach is utilized for FGM sandwich plates for various boundary conditions. The analytical solutions for critical buckling loads of several types of powerly graded sandwich plates resting on visco-Pasternak foundations under various boundary conditions are presented. Some numerical results are presented to indicate the effects of inhomogeneity parameter, elastic foundation type, and damping coefficient of the foundation, on the critical buckling loads.

The selection to position visco-elastic material for reduction radiated sound power from a stiffened plate (보강판의 음향방사파워저감을 위한 제진재의 위치선정)

  • 안호일;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.257-262
    • /
    • 1996
  • The first purpose of this study investigates the influence of stiffening on the acoustic response of stiffened plates, which are often employed in steel structures. And the radiation efficiency is measured by average mean square velocity and sound intensity of stiffened plates. The second, it determines influence of mass, damp and stiffeness due to the partial adhesive visco-elastic material to reduce radiated sound power.

  • PDF

Structural analysis of liquid rocket thrust chamber regenerative cooling channel using visco-plastic model (점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석)

  • Ryu Chul-Sung;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.151-155
    • /
    • 2006
  • Elastic-viscoplastic structural analysis is performed for regenerative cooling chamber of liquid rocket thrust chamber using Bodner-Partom visco-plastic model. Strain rate test was also conducted for a copper alloy at various temperatures in order to get material constants of visco-plastic model used in the structural analysis. Material constants of visco-plastic model were obtained from strain rate test results and visco-plsstic model was incorporated into finite element program, Marc, by means of user subroutine. The structural analysis results indicate that the deformation of cooling channel is mostly caused by thermal loading rather than pressure loading and confirmed structural stability of the cooling channel under operating condition.

  • PDF

The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate

  • Boulefrakh, Laid;Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.161-178
    • /
    • 2019
  • In this research, a simple quasi 3D hyperbolic shear deformation model is employed for bending and dynamic behavior of functionally graded (FG) plates resting on visco-Pasternak foundations. The important feature of this theory is that, it includes the thickness stretching effect with considering only 4 unknowns, which less than what is used in the First Order Shear Deformation (FSDT) theory. The visco­Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The equations of motion for thick FG plates are obtained in the Hamilton principle. Analytical solutions for the bending and dynamic analysis are determined for simply supported plates resting on visco-Pasternak foundations. Some numerical results are presented to indicate the effects of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic behavior of rectangular FG plates.

Structural Analysis of Liquid Rocket Thrust Chamber Regenerative Cooling Channel using Bodner-Partom Viscoplastic Model (Bodner-Partom 점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.69-76
    • /
    • 2006
  • Elastic-viscoplastic structural analysis has been performed for regenerative cooling chamber of liquid rocket thrust chamber using Bodner-Partom visco-plastic model. Strain rate test was conducted for a copper alloy at various temperatures in order to get material constants of visco-plastic model used in the structural analysis. Material constants of visco-plastic model were obtained from strain rate test results and visco-plastic model was incorporated into finite element program, Marc, by means of a user subroutine. The structural analysis results indicated that the deformation of cooling channel is mostly caused by thermal loading rather than pressure loading and confirmed structural stability of the cooling channel under the operating condition.

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping;Zhang, Junhui;Zeng, Ling;Yu, Cheng;Zheng, Yun
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-63
    • /
    • 2022
  • Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.

Thermal load analysis in an incompressible linear visco-elastic cylinder bonded to an elastic shell (非壓縮 粘彈性 圓筒體의 熱荷重 解析)

  • 이영신;최용규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.205-213
    • /
    • 1987
  • A linear thermoviscoelastic material model, whose basis is on incremental constitutive equation that takes complete strain and temperature histories into account, is derived and computerized in the finite element code. The thermoviscoelastic F.E.M. code which is intended primarily to analyze the cylinder model during the cool-down period, embodies the assumption of linearly elastic bulk and visco-elastic shear responses, thermo-rheologically simple response to temperature change and isotropic thermal expansion. The verification of computer program is accomplished by first testing it against a closed form solution of A.M. Freudenthal & M. Shinozuka's. The stress and strain analyses of five cylindrical models are presented and compared with experimental results. Analytical results are good agreement with experimental results. Margins of safety are evaluated and its allowable ranges are presented.

Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model

  • Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Hussain, Muzamal;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.49-64
    • /
    • 2022
  • In this work, the bending and dynamic behaviors of advanced composite plates resting on variable visco-Pasternak foundations are studied using a simple shear deformation integral plate model. The research is carried out with a view to a three-parameter foundation including the influences of the variable Winkler coefficient, the constant Pasternak coefficient and the damping coefficient of the elastic medium. The present theory uses a displacement field with integral terms instead of derivative terms by including also the shear deformation effect without introducing the shear correction factors. The equations of motion for advanced composite plates are obtained using the Hamilton principle. Analytical solutions for the bending and dynamic analysis are deduced for simply supported plates resting on variable visco-Pasternak foundations. Some numerical results are presented to demonstrate the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic responses of advanced composite plates.