• Title/Summary/Keyword: Virulence Factor

Search Result 198, Processing Time 0.026 seconds

Selection of a Highly Virulent Verticillium lecanii Strain Against Trialeurodes vaporariorum at Various Temperatures

  • Lee, Min-Ho;Yoon, Cheol-Sik;Yun, Tae-Yu;Kim, Hong-Sun;Yoo, Jai-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.145-148
    • /
    • 2002
  • The virulence of five Verticillium lecanii strains against greenhouse whiteflies, Trialeurodes vaporariorum, was tested at various temperatures as a major environmental factor. Strain CS-626 was found to be the most durable strain at a broad temperature range, and highly virulent against greenhouse whiteflies in a detached-leaf bioassay. In a tomato plant pot experiment, the $LT_{50}\;and\;LC_{50}$ of the CS-626 strain were 6.2 days and $2.3{\times}10^6$ conidia/ml, respectively. The optimal concentration of CS-626 for successful infection was $1{\times}10^8$conidia/ml. These results indicate that the CS-626 strain of Verticillium lecanii has a strong potential for effectively controlling greenhouse whiteflies.

Pathogenic Groups Identified Among Isolates of Rhynchosporium secalis

  • Arabi, Mohammad Imad Eddin;Al-Shehadah, Eyad;Jawhar, Mohammad
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.260-263
    • /
    • 2010
  • Scald, caused by Rhynchosporium secalis has been the major yield-reducing factor for barley production during the last decade. In this study, pathogenic groups of R. secalis were identified to obtain a global picture of the assembly of isolates involved in Syrian populations which is essential for the development of scald-resistant barley cultivars. To identify a number of pathogenic groups, 49 isolates collected over ten years from major barley growing areas in Syria were evaluated on five differential barley genotypes. Genotypes presented a continuous range of response from highly susceptible to moderately resistant, but none were immune to the disease. A cluster analysis placed isolates in six distinct differential pathogenic groups. Mean disease rating of 39.24% was the separation point between avirulent and virulent reactions. Isolate Rs46 exhibited distinct differential virulence patterns associated with high frequency across all genotypes. Hence, the data presented here provides crucial information for future selection of isolates to develop durable barley scald resistance.

Safety Assessment of Commercial Enterococcus Probiotics in Korea

  • Lee, Ki-Eun;Lee, Min-Young;Lee, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.942-945
    • /
    • 2008
  • There have been concerns about possible pathogenicity and antimicrobial resistance in Enterococcus, which constitute more than 50% of probiotics in the worldwide market. In this study, Enterococcus in sixteen products manufactured by ten different companies was tested for the presence of six virulence genes and two vancomycin resistance genes. Results in this study showed the safety of Enterococcus on the Korean market and the importance of screening vanA, vanE, agg, cylA, esp, and gelE. Pulse-field gel electrophoresis showed that the sixteen isolates tested in this study are originated from three strains.

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

The Relationship of the Helicobacter pylori Virulence Factor Gene Subtype in Gastric Adenocarcinoma (위선암에서 Helicobacter pylori 독성인자와 유전자 아형의 관련성)

  • Shin Jong Min;Han Sang Young;Keum Dong Joo;Kim Kwang Jin;Jee Sam Ryong;Hong Gi Bong;Lee Jong Hun;Choi Seok Ryeol;Shin Woo Won
    • Journal of Gastric Cancer
    • /
    • v.2 no.1
    • /
    • pp.12-19
    • /
    • 2002
  • Purpose: The H. pylori cagA gene, vacA gene and iceA gene are considered to be important virurence factors that have been implicated in the development of gastric adenocarcinoma. It was reported that the presence of IS605 elements may be responsible for rearrangements and lead to partial or total deletions of the cag pathogenicity island (PAI) and the virulence of cag PAI may be changed. However, different results regarding the association between these virulence factors and clinical disease have been reported from different geographic regions. This study evaluated the relationship between H. pylori virulence factors such as cagA, vacA, iceA, IS605 and gastric adenocarcinoma. Materials and Methods: H. pylori isolates were obtained from 54 infected patients (24 cases of gastric adenocarcinoma, 30 cases of control). H. pylori isolates were identified by PCR with ureC gene and 16S rRNA. PCR was performed to examine cagA, vacA, iceA and IS605 genotypes. Results: Significant difference was found in the negative rates of cagA between gastric adenocarcinoma group and control ($62.5\%\;vs.\;33.3\%$ P=0.033). No significant difference was found in the prevalence of iceA, vacA between gastric adenocar cinoma and control. The genotype of cagA+ vacA s1-m1 iceA1 was predominant in H. pylori isolates irrespective of the clinical outcome. IS605 in PAI was not found in gastric adenocarcinoma gruop and control. The positive rates of IS605 in genome were $33.3\%$ in gastric adenocarcinoma group and $36.7\%$ in control (P>0.05). In gastric carcinoma, the positive rate of $cagA^{+}/IS605$ was lower than in control ($12.5\%\;vs\;40.0\%$, P=0.025) and the positive rate of cagA-/IS605 was higher than in control ($54.2\%\;vs\;23.3\%$, P=0.02). Conclusion: H. pylori virulence factors had not related significantly with gastric adenocarcinoma. Further study is needed to examine the specificity of H. pylori strains.

  • PDF

Expression of Anthrax Lethal Factor, a Major Virulence Factor of Anthrax, in Saccharomyces cerevisiae (Yeast내에서 탄저병 원인균인 Bacillus anthracis의 치사독소인 Lethal Factor 단백질 발현)

  • Hwang Hyehyun;Kim Joungmok;Choi Kyoung-Jae;Chung Hoeil;Han Sung-Hwan;Koo Bon-Sung;Yoon Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • Anthrax is an infectious disease caused by the gram-positive bacterium, Bacillus anthracis. Anthrax toxin is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF onto the cytosol. LF is a zinc-dependent metalloprotease, which is a critical virulence factor in cytotoxicity of infected animals. Therefore, it is of interest to develop its potent inhibitors for the neutralization of anthrax toxin. The first step to identify the inhibitors is the development of a rapid, sensitive, and simple assay method with a high-throughput ability. Much efforts have been concentrated on the preparation of powerful assays and on the screening of inhibitors using these system. In the present study, we have tried to construct anthrax lethal factor in yeast expression system to prepare cell-based high-throughput assay system. Here, we have shown the results covering the construction of a new vector system, subcloning of LF gene, and the expression of target gene. Our results are first trial to express LF gene in eukaryote and provide the basic steps in design of cell-based assay system.

An Animal Model to Evaluate the Protective Efficacy of Haemophilus influenzae Type b Conjugate Vaccines

  • Kim Hyun Sung;Yoo Tae Hyeon;Jang Yang Suk;Kim Hun;Park Jin Yong;Hur Byung Ki;Ryu Yeon Woo;Kim Jong Su
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.490-494
    • /
    • 2004
  • An efficacy test of PRP (polyribosylribitol phosphate)-TT (Tetanus toxoid) conjugate vaccines was carried out using BALB/c mice as an animal model by inoculating Haemophilus in­fluenzae type b (Hib) with a virulence enhancement factor (VEF). Three administrations of the conjugate vaccines at 2-week intervals elicited a significantly high level of PRP antibodies (P>0.0001). The protective activity of the PRP immunization was challenged with either Hib with iron dextran (Hib/) or with a combination of mucin and hemoglobin (Hibmh) as a VEF. The me­dium lethal dose $(LD_{50})$ for Hibmh and Hibiwas measured as 10 CFU (Colony Forming Unit) and $2.5{\times}10^{8}$ CFU respectively. Each immunized animal was challenged with five or ten times the $LD_{50}$ level of bacteria with a VEF. A significant difference in mortality between the immunized and control mice (P> 0.01) was observed with the Hibmh challenge inoculation but not with the Hibi challenge inoculation. These results show that a combination of mucin and hemoglobin was able to enhance the virulence of Hib in BALB/c mice to cause a lethal infection, thus suggesting that BALB/c mice introduced to this method can be an effective model animal for testing the protective efficacy of H. influenzae conjugate vaccines.

Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence

  • Kim, Won-Tae;Kong, Hyun-Hee;Ha, Young-Ran;Hong, Yeon-Chul;Jeong, Hae-Jin;Yu, Hak-Sun;Chung, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.321-330
    • /
    • 2006
  • The pathogenic mechanism of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK) by Acanthamoeba has yet to be clarified. Pretense has been recognized to play an important role in the pathogenesis of GAE and AK. In the present study, we have compared specific activity and cytopathic effects (CPE) of purified 33 kDa serine proteinases from Acanthamoeba strains with different degree of virulence (A. healyi OC-3A, A. lugdunensis KA/E2, and A. castelianii Neff). Trophozoites of the 3 strains revealed different degrees of CPE on human corneal epithelial (HCE) cells. The effect was remarkably reduced by adding phenylmethylsulfonylfluoride (PMSF), a serine proteinase inhibitor. This result indicated that PMSF-susceptible proteinase is the main component causing cytopathy to HCE cells by Acanthamoeba. The purified 33 kDa serine proteinase showed strong activity toward HCE cells and extracellular matrix proteins. The purified proteinase from OC-3A, the most virulent strain, demonstrated the highest enzyme activity compared to KA/E2, an ocular isolate, and Neff, a soil isolate. Polyclonal antibodies against the purified 33 kDa serine proteinase inhibit almost completely the proteolytic activity of culture supernatant of Acanthamoeba. In line with these results, the 33 kDa serine proteinase is suggested to play an important role in pathogenesis and to be the main component of virulence factor of Acanthamoeba.

Role of Alkaline Serine Protease, Asp, in Vibrio alginolyticus Virulence and Regulation of Its Expression by LuxO-LuxR Regulatory System

  • Rui, Haopeng;Liu, Qin;Wang, Qiyao;Ma, Yue;Liu, Huan;Shi, Cunbin;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The alkaline serine protease asp, which was shown to be a virulence factor of Vibrio alginolyticus as a purified protein, was cloned from V. alginolyticus EPGS, a strain recently isolated from moribund Epinephelus coioides in an outbreak of vibriosis in a mariculture farm of Shenzhen. The asp null mutant was constructed by homologous recombination with suicide plasmid pNQ705-1. Compared with the wild-type strain, the asp null mutant exhibited a significant decrease of total extracellular protease activity, and caused a IS-fold decrease in virulence of V. alginolyticus. In our previous study, the luxO and $luxR_{val}$ genes from V. alginolyticus MVP01 were cloned and identified, and the luxO-$luxR_{val}$ regulatory couple was shown to regulate various genes expression, suggesting that it played a central role in the quorum sensing system of V. alginolyticus. In this study, the regulation of the asp gene was analyzed by using RT-PCR and quantitative real-time PCR methods; we proved that its transcription was greatly induced at the late stage of growth and was regulated by a luxO-$luxR_{val}$ regulatory system.

Effect of Scutellariae Radix as a Novel Antibacterial Herb on the ppk(Polyphosphate Kinase) Mutant of Salmonella typhimurium

  • Hahm, Dae-Hyun;Yeom, Mi-Jung;H.Lee, Eun-Joo;Shim, In-Sop;Lee, Hye-Jung;Kim, Hong-Yeoul
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1061-1065
    • /
    • 2001
  • The antibacterial effects of water extracts of Scutellariate Radix (a dried root of Scutellaria baicalensis GEORGI) and its major flavonoid components, Baicalin and Baicalein, on Salmonella typhimurium, a representative enteric pathogen, were studied. Through a Kriby-Bauer disc analysis, the growth-inhibition activity of Scutellariae Radix against. S. typhimurium was found to be compatible with commercial antibiotics, such as ampicillin, chloramphenicol, and streptomycin. In contrast, the growth of a nonpathogenic E. coli strain was unaffercted by Scutellariae Radix. To examine the effect of polyphosphate kinase (ppk), a putative virulence factor, on the antibacterial activity of Scutellariae Radix, the growth profile of a ppk mutant of S. typhimurium was investigated in a tryptic soy broth containing different concentrations of water extracts of Scutellariae Radix. The ppk mutant was able to grow in 6 mg/ml of water extracts of Scutellariae Radix, whereas in 6 mg/ml of water extracts of Scutellariae Radix, whereas the wild-type could not, implying that the inactivation of ppk made S. typhimurium more resistant to the antibacterial activity of Scutellariae Radix. No enhanced resistance was observed in a ppk mutant of S. typhimurium complemented with a ppk expression vector. The attenuation of the virulence by ppk inactivation was also observed in a virulence assay using BLAB/c mice. Neither Baicalin nor Baicalein exhibited any growth-inhibition activity against S. typhimurium. The water extracts of Scutellariae Radix stimulated the transcription of ppk, especially in the early growth-stage of S. typhimurium.

  • PDF