• Title/Summary/Keyword: Virucidal effects

Search Result 2, Processing Time 0.017 seconds

Effects of Physical and Chemical Treatments for Reduction of Staphylococcal Phages (황색포도상구균 박테리오파지의 저감화를 위한 물리화학적 처리 효과)

  • Baek, Da-Yun;Park, Jong-Hyun;Cho, Sung-Rae;Lee, Young-Duck
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.106-114
    • /
    • 2019
  • The effect of physical and chemical treatments to reduce staphylococcal phages was investigated. To determine impact of physical treatment on viability of phages, two staphylococcal phages (SAP84 and SAP89) were treated with multiple heat ($55^{\circ}C$ and $60^{\circ}C$) and pH (pH4, 7, 10) conditions. Viability of SAP 84 was dramatically reduced at 60C and SAP 89 was completely inactivated at 60C within 25 min. Overall, the two phages were stable under all the pH conditions tested except for the SAP 89 at pH 10. Treatments, a 10% FAS (Ferrous Ammonium Sulfate) solution and various density of ethanol and sodium hypochlorite were used to reduce the two phages. SAP 84 was unstable in 50% and 70% ethanol. However, SAP 84 and SAP 89 showed high tolerance after exposure to 100 ppm of sodium hypochlorite which is known as an effective sterilizer. As soon as the two phages were treated with 10% FAS, which is used as a virucidal agent, they were inactivated and did not form any plaque. The result of this study provides additional evidence that staphylococcal phages can be controlled by various physicochemical treatments.

Antiviral Activity of Plant-derived Natural Products against Influenza Viruses (식물 유래 천연물의 인플루엔자에 대한 항바이러스 활성)

  • Kim, Seonjeong;Kim, Yewon;Kim, Ju Won;Hwang, Yu-bin;Kim, Seong Hyeon;Jang, Yo Han
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.375-390
    • /
    • 2022
  • Influenza viruses are zoonotic respiratory pathogens, and influenza infections have caused a substantial burden on public health systems and the livestock industry. Although currently approved seasonal influenza vaccines have shown potent protection efficacy against antigenically well-matched strains, there are considerable unmet needs for the efficient control of viral infections. Enormous efforts have been made to develop broadly protective universal influenza vaccines to tackle the huge levels of genetic diversity and variability of influenza viruses. In addition, antiviral drugs have been considered important interventions for the treatment of viral infections. The viral neuraminidase inhibitor oseltamivir is the most widely used antiviral medication to treat influenza A and influenza B viruses. However, unsatisfactory clinical outcomes resulting from side effects and the emergence of resistant variants have led to greater attention being paid to plants as a natural resource for anti-influenza drugs. In particular, the recent COVID-19 pandemic has underpinned the need for safe and effective antiviral drugs with a broad spectrum of antiviral activity to prevent the rapid spread of viruses among humans. This review outlines the results of the antiviral activities of various natural products isolated from plants against influenza viruses. Special focus is paid to the virucidal effects and the immune-enhancing effects of antiviral natural products, since the products have broad applications as inactivating agents for the preparation of inactivated vaccines and vaccine adjuvants.