Browse > Article
http://dx.doi.org/10.13103/JFHS.2019.34.1.106

Effects of Physical and Chemical Treatments for Reduction of Staphylococcal Phages  

Baek, Da-Yun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
Park, Jong-Hyun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
Cho, Sung-Rae (Patissier Mijin Food)
Lee, Young-Duck (Department of Food Science and Engineering, Seowon University)
Publication Information
Journal of Food Hygiene and Safety / v.34, no.1, 2019 , pp. 106-114 More about this Journal
Abstract
The effect of physical and chemical treatments to reduce staphylococcal phages was investigated. To determine impact of physical treatment on viability of phages, two staphylococcal phages (SAP84 and SAP89) were treated with multiple heat ($55^{\circ}C$ and $60^{\circ}C$) and pH (pH4, 7, 10) conditions. Viability of SAP 84 was dramatically reduced at 60C and SAP 89 was completely inactivated at 60C within 25 min. Overall, the two phages were stable under all the pH conditions tested except for the SAP 89 at pH 10. Treatments, a 10% FAS (Ferrous Ammonium Sulfate) solution and various density of ethanol and sodium hypochlorite were used to reduce the two phages. SAP 84 was unstable in 50% and 70% ethanol. However, SAP 84 and SAP 89 showed high tolerance after exposure to 100 ppm of sodium hypochlorite which is known as an effective sterilizer. As soon as the two phages were treated with 10% FAS, which is used as a virucidal agent, they were inactivated and did not form any plaque. The result of this study provides additional evidence that staphylococcal phages can be controlled by various physicochemical treatments.
Keywords
Staphylococcal phage; Physical treatments; Chemical treatments; Virucidal effects;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., Ikeuchi, M., Tani, T., Fujieda, M., Wakiguchi, H., Imai, S.: Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J. Infect. Chemother., 11, 211-219 (2005).   DOI
2 Liu, H., Niu, Y.D., Li, J., Stanford, K., McAllister, T.A.: Rapid and accurate detection of bacteriophage activity against Escherichia coli O157:H7 by propidium monoazide real-time PCR. Biomed Res. Int., 2014 (2014).
3 Liu, H., Meng, R., Wang, J., Niu, Y.D., Li, J., Stanford, K., McAllister, T.A.: Inactivation of Escherichia coli O157 bacteriophages by using a mixture of ferrous sulfate and tea extract. J. Food Prot., 78, 2220-2226 (2015).   DOI
4 Chibeu, A., Agius, L., Gao, A., Sabour, P.M., Kropinski, A.M., Balamurugan, S.: Efficacy of bacteriophage $LISTEX^{TM}$ P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int. J. Food Microbiol., 167, 208-214 (2013).   DOI
5 Muller-Merbach, M., Rauscher, T., Hinrichs, J.: Inactivation of bacteriophages by thermal and high-pressure treatment. Int. Dairy J., 15, 777-784 (2005).   DOI
6 Jonczyk, E., Klak, M., Miedzybrodzki, R., Gorski, A.: The influence of external factors on bacteriophages-review. Folia Microbiol. (Praha)., 56, 191-200 (2011).   DOI
7 Campagna, C., Villion, M., Labrie, S. J., Duchaine, C., Moineau, S.: Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants. Int. J. Food Microbiol., 171, 41-47 (2014).   DOI
8 Branston, S.D., Stanley, E.C., Ward, J.M., Keshavarz-Moore, E.: Determination of the survival of bacteriophage M13 from chemical and physical challenges to assist in its sustainable bioprocessing. Biotechnol. Bioprocess Eng., 18, 560-566 (2013).   DOI
9 Lee, Y.D., Chun, H., Park, J.H.: Characteristics and growth inhibition of isolated bacteriophages for Enterococcus faecalis. Food Sci. Biotechnol., 23, 1357-1361 (2014).   DOI
10 Lee, Y.D. Park, J.H.: Isolation and characterization of temperate phages in Enterococcus faecium from sprouts. Korean J. Food Sci. Technol., 46, 323-327 (2014).   DOI
11 Kim, E.J., Chang, H.J., Kwak, S., Park, J.H.: Virulence factors and stability of coliphages specific to Escherichia coli O157:H7 and to Various E. coli infection. J. Microbiol. Biotechnol., 26, 2060-2065 (2016)   DOI
12 Park D.S.: Characterization of shiga toxin encoding bacteriophage and expression of non-STEC transferred shiga toxin gen. MS thesis, Gachon University, Sungnam, Korea (2018).
13 Ackermann, H.W.: Frequency of morphological phage descriptions in the year 2000, Brief Review. Arch. Virol., 146, 843-857 (2000).   DOI
14 Deghorain, M., Van Melderen, L.: The staphylococci phages family: An overview. Viruses, 4, 3316-3335 (2012).   DOI
15 Zhang, Q., Xing, S., Sun, Q., Pei, G., Cheng, S., Liu, Y., An, X., Zhang, X., Qu, Y., Tong, Y.: Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang, China. Virus Genes, 53, 464-476 (2017).   DOI
16 Zhang, L., Bao, H., Wei, C., Zhang, H., Zhou, Y., Wang, R.: Characterization and partial genomic analysis of a lytic Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis in Mid-east of China. Virus Genes, 50, 111-117 (2015).   DOI
17 Litt, P. K. & Jaroni, D.: Isolation and physiomorphological characterization of Escherichia coli O157:H7-infecting bacteriophages recovered from beef cattle operations. Int. J. Microbiol., 2017, (2017).
18 Horikoshi, K., Yonezawa, Y.A.: Bacteriophage active on an alkalophilic Bacillus sp. J. Gen. Virol., 39, 183-185 (1978).   DOI
19 Cui, Z., Feng, T., Gu, F., Li, Q., Dong, K., Zhang, Y., Zhu, Y., Han, L., Qin, J., Guo, X.: Characterization and complete genome of the virulent Myoviridae phage JD007 active against a variety of Staphylococcus aureus isolates from different hospitals in Shanghai, China. Virol. J., 14, 1-8 (2017).   DOI
20 Li, L., Zhang, Z.: Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol. Biol. Rep., 41, 5829-5838 (2014).   DOI
21 Sasikala, D. Srinivasan, P.: Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal. Microb. Pathog., 101, 24-35 (2016).   DOI
22 Quiberoni, A., Guglielmotti, D.M., Reinheimer, J.A.: Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides. Int. J. Food Microbiol., 84, 51-62 (2003).   DOI
23 Ebrecht, A.C., Guglielmotti, D.M., Tremmel, G., Reinheimer, J.A., Suarez, V.B.: Temperate and virulent Lactobacillus delbrueckii bacteriophages: Comparison of their thermal and chemical resistance. Food Microbiol., 27, 515-520 (2010).   DOI
24 Suarez, V.B., Reinheimer, J.A.: Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcus lactis phages. J. Food Prot., 65, 1756-1759 (2002).   DOI
25 Quiberoni, A., Suarez, V.B., Reinheimer, J.A.: Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments. J. Food Prot., 62, 894-898 (1999).   DOI
26 Sanekata, T., Fukuda, T., Miura, T., Morino, H., Lee, C., Maeda, K., Araki, K., Otake, T., Kawahata, T., Shibata, T.: Evalutaion of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza vorus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol of Science., 15, 45-49 (2010)   DOI
27 Capra, M.L., Quiberoni, A., Reinheimer, J.A.: Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett. Appl. Microbiol., 38, 499-504 (2004).   DOI
28 BINETTI, A.G., REINHEIMER, J.A.: Thermal and Chemical Inactivation of Indigenous Streptococcus thermophilus Bacteriophages Isolated from Argentinian Dairy Plants. J. Food Prot., 63, 509-515 (2000).   DOI
29 Park, W.J.: Reduce of Bacillus cereus in sprouts by using bacteriophage. MS thesis, Kyungwon University, Sungnam, Korea (2012).
30 Briggiler Marco, M., De Antoni, G.L., Reinheimer, J.A., Quiberoni, A.: Thermal, chemical, and photocatalytic inactivation of Lactobacillus plantarum bacteriophages. J. Food Prot., 72, 1012-1019 (2009).   DOI
31 Pujato, S.A., Guglielmotti, D.M., Ackermann, H.W., Patrignani, F., Lanciotti, R., Reinheimer, J.A., Quiberoni, A.: Leuconostoc bacteriophages from blue cheese manufacture: Long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application. Int. J. Food Microbiol., 177, 81-88 (2014).   DOI
32 Stewart, G.S., Jassim, S.A., Denyer, S.P., Newby, P., Linley, K., Dhir, VK.: The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J. Appl. Microbiol., 84, 777-783 (1998).   DOI
33 Lim G.Y, Park W.J, Lee Y.D, Park J.H.: Isolation and characterization of bacteriophages for the control of Shiga Toxin-producing E. coli. Food Sci. Technol., 50, 594-600 (2018).
34 Oliveira, I. C., Almeida, R. C. C., Hofer, E., Almeida, P. F.: Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment. Brazilian J. Microbiol., 43, 1128-1136. (2012).   DOI
35 McNerney, R., Wilson, S.M., Sidhu, A.M., Harley, V.S., al Suwaidi, Z., Nye, P.M., Parish, T., Stoker, N.G.: Inactivation of mycobacteriophage D29 using ferrous ammonium sulphate as a tool for the detection of viable Mycobacterium smegmatis and M. tuberculosis. Res. Microbiol., 149, 487-495 (1998).   DOI
36 Appelbaum, P.C.: The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin. Microbiol. Infect., 12, 16-23 (2006).   DOI
37 Hennekinne, J.A., De Buyser, M.L., Dragacci, S.: Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev., 36, 815-836 (2012).   DOI
38 McGuinness, W.A., Malachowa, N., DeLeo, F.R.: Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med., 90, 269-281 (2017)
39 Franklin, D.L.: Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin Invest. 111, 1265-1273 (2003)   DOI
40 Wielders, C.L.C.: Evidence for in-vivo transfer of mecA DNA between strains of Staphylococcus aureus. Lancet., 357, 1674-1675 (2001).   DOI
41 Sillankorva, S.M., Oliveira, H., Azeredo, J.: Bacteriophages and their role in food safety. Int. J. Microbiol., 2012, (2012).
42 Kazmierczak, Z., Gorski, A., Dabrowska, K.: Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses, 6, 2551-2570 (2014).   DOI
43 Sulakvelidze, A., Alavidize, Z., Morris, J.G.: JR. Bacteriophage therapy. Antimicrob. Agents Chemother., 45, 649-659 (2001).   DOI