• Title/Summary/Keyword: Virtual simulation

Search Result 2,170, Processing Time 0.033 seconds

The Effects of Expertise Level on Task Load and Easy-to-use in Virtual Reality Based Dental Clinical Simulation (치과임상용 가상현실 시뮬레이션에서 사용자의 숙련도 수준이 과제부하와 사용용이성에 미치는 영향)

  • Jeong, Museok;Lim, Taehyeong;Ryu, Jeeheon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.258-270
    • /
    • 2021
  • This study aimed to investigate the effects of the virtual reality simulation for malocclusion examination for dental education. A 4-step modeling procedure was applied to develop a tooth model with a realistic level in order to be held and observed in detail. Eighty-six participants used HMDs to examine the developed virtual dental simulation to identify their perception according to expertise levels. The independent variable, expertise group, included three levels: 29 juniors, 29 seniors, and 28 dentists, respectively. The dependent variables, that were task-load and usability, were measured through two cases. Results showed that the junior group perceived a higher level of mental demands and embarrassment than the dentist group. It indicated that the perceived task load varies according to the expertise levels in the simulation task. However, the senior group perceived a higher level of ease of use than the dentist group. This study presented the implications for the development of virtual reality simulation in detail.

Development of Physics Simulation for Augmented Reality Billiards Content (증강현실 당구 콘텐츠를 위한 물리 시뮬레이션 개발)

  • Kim, Hong-Jik;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.150-159
    • /
    • 2022
  • In this paper, we propose a physics simulation for augmented reality (AR) billiards content. The characteristics of the physics simulation for the proposed AR billiards content are as follows. First, physical equations are derived by calculating the force and moment of inertia applied to the billiards ball to realize the motion of the billiards ball similar to the real one in the AR environment. Then, we determine the velocity and angular velocity of the virtual billiards ball associated with the rotation of the virtual billiards ball with respect to the impact point. Second, using some vectors such as incidnet vector, normal vector, reflection vector, the trajectory of the virtual billiards ball would be implement. these equations are applied to AR environment so that AR billiards content could be implement. This physics simulation allows users to feel like the real world using a virtual pool table and induce them to interact with the real environment. As a result of the experiment, the accuracy range between the path of the real billiards ball and the path of the virtual billiards ball was calculated to be 97.75% to 99.11%. Therefore, it was determined that the performance of the physics simulation for the AR billiards content proposed in this paper performs similarly to the path of the real billiards ball.

Effect of using virtual reality simulation for CPR education in prehospital setting (심정지 현장에서 가상현실 시뮬레이션을 이용한 심폐소생술 교육 효과에 대한 연구)

  • Eun-Ae, Kim;Jin-Kyung, Choi;Keun-Ja, Cho
    • The Korean Journal of Emergency Medical Services
    • /
    • v.26 no.3
    • /
    • pp.137-148
    • /
    • 2022
  • Purpose: This study aims to provide essential data for developing educational methods and content, tailored for the prehospital field situation, by analyzing the effects of education regarding the management of cardiac arrest. Methods: This study is a primitive experimental study of 55 new firefighters in C Fire Service Academy. Data were collected from the training which was imparted using the CPR virtual reality simulation program (CBS 2.0) in accordance with COVID-19 quarantine rules and social distancing. Data were analyzed utilizing SPSS version 25.0. Results: After VR simulation training, knowledge about performing CPR (14.85) and self-efficacy (4.12) were significantly high (p<.001). Learning immersion was also high (3.99±0.59), but learning satisfaction was even higher (4.34±0.62). Depending on the recruitment field, firefighters showed higher learning immersion (4.04±0.58 vs 3.68±0.63) and self-efficacy (4.16±0.55 vs 3.91±0.84) than 119 EMTs' but, there was no significant difference between them. In contrast, The quality of performance of CPR by EMT's was significantly higher than that of firefighters (p=.025). Depending on previous simulation experience, there was no significant difference among dependent variables. Conclusion: Virtual reality simulation shows positive results in learning immersion, learning satisfaction, self-efficacy, and performance of CPR. Therefore, we propose that virtual reality simulation training can be a new educational paradigm.

Driving Performance Analysis of the Adaptive Cruise Controlled Vehicle with a Virtual Reality Simulation System

  • Kwon Seong-Jin;Chun Jee-Hoon;Jang Suk;Suh Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.29-41
    • /
    • 2006
  • Nowadays, with the advancement of computers, computer simulation linked with VR (Virtual Reality) technology has become a useful method for designing the automotive driving system. In this paper, the VR simulation system was developed to investigate the driving performances of the ASV (Advanced Safety Vehicle) equipped with an ACC (Adaptive Cruise Control) system. For this purpose, VR environment which generates visual and sound information of the vehicle, road, facilities, and terrain was organized for the realistic driving situation. Mathematical models of vehicle dynamic analysis, which includes the ACC algorithm, have been constructed for computer simulation. The ACC algorithm modulates the throttle and the brake functions of vehicles to regulate their speeds so that the vehicles can keep proper spacing. Also, the real-time simulation algorithm synchronizes vehicle dynamics simulation with VR rendering. With the developed VR simulation system, several scenarios are applied to evaluate the adaptive cruise controlled vehicle for various driving situations.

Development and Test of the Remote Operator Visual Support System Based on Virtual Environment (가상환경기반 원격작업자 시각지원시스템 개발 및 시험)

  • Song, T.G.;Park, B.S.;Choi, K.H.;Lee, S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.429-439
    • /
    • 2008
  • With a remote operated manipulator system, the situation at a remote site can be rendered through remote visualized image to the operator. Then the operator can quickly realize situations and control the slave manipulator by operating a master input device based on the information of the virtual image. In this study, the remote operator visual support system (ROVSS) was developed for viewing support of a remote operator to perform the remote task effectively. A visual support model based on virtual environment was also inserted and used to fulfill the need of this study. The framework for the system was created by Windows API based on PC and the library of 3D graphic simulation tool such as ENVISION. To realize this system, an operation test environment for a limited operating site was constructed by using experimental robot operation. A 3D virtual environment was designed to provide accurate information about the rotation of robot manipulator, the location and distance of operation tool through the real time synchronization. In order to show the efficiency of the visual support, we conducted the experiments by four methods such as the direct view, the camera view, the virtual view and camera view plus virtual view. The experimental results show that the method of camera view plus virtual view has about 30% more efficiency than the method of camera view.

Development of a nonlinear biomechanical soft tissue model for a virtual surgery trainer (가상수술기를 위한 비선형 생체 모델의 개발)

  • Kim J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.911-914
    • /
    • 2005
  • Soft tissue characterization and modeling based on living tissues has been investigated in order to provide a more realistic behavior in a virtual reality based surgical simulation. In this paper, we characterize the nonlinear viscoelastic properties of intra-abdominal organs using the data from in vivo animal experiments and inverse FE parameter estimation algorithm. In the assumptions of quasi-linear-viscoelastic theory, we estimated the nonlinear material parameters to provide a physically based simulation of tissue deformations. To calibrate the parameters to the experimental results, we developed a three dimensional FE model to simulate the forces at the indenter and an optimization program that updates new parameters and runs the simulation iteratively. The comparison between simulation and experimental behavior of pig intra abdominal soft tissue are presented to provide a validness of the tissue model using our approach.

  • PDF

Implementation and Applications of Simulation Based Digital Shipyard (시뮬레이션 기반 디지털 조선소 구축 및 활용)

  • Han, Sang-Dong;Ryu, Cheol-Ho;Shin, Jong-Gye;Lee, Jong-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • Shipbuilding industries have been struggling to reduce production time and cost of their products in many aspects. Manufacturing systems have been changed, new production lines and robots have been installed, and new planning and scheduling systems have been adopted in order to achieve shorter time-to-market and higher productivity. Simulation based manufacturing, digital manufacturing, or virtual manufacturing simulation, whatever the name means, is an approach to achieve such a goal. In order to improve productivity in a shipbuilding process at a shipyard, a digital shipyard development has been driven. This paper proposed how to implement the digital shipyard, what to do with it, and what to obtain from it. This digital shipyard will help simulate and optimize the entire shipbuilding life cycle with its virtual environment through shipbuilding process from the initial development stage to the launch.

Development of a material handling automation simulation using a virtual AGV (가상 AGV를 이용한 물류자동화 시뮬레이션 개발)

  • Ro, Young-Shick;Kang, Hee-Jun;Suh, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.563-566
    • /
    • 2006
  • In this paper, we studied about AGVs modeling and material handling automation simulation using a virtual AGV. The proposed virtual AGV model that operates independently each other is based on a real AGV. Continuous straight-line and workstation model using vector drawing method that could easily, rapidly work system modeling are suggested. Centralized traffic control, which could collision avoidance in intersection and should not stop AGV as possible, and algorithm for detour routing which performs when another AGV is working in pre-routed path are proposed. The traffic control and the algorithm have been proved efficiently by simulation.

  • PDF

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Virtual Machine Tool

  • Jang, Dong-Young
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.204-208
    • /
    • 1998
  • The fundamental issues to evaluate machine tool's performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. The designed virtual machining system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

VIRTUAL REALITY SHIP SIMULATOR

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.06a
    • /
    • pp.93-105
    • /
    • 2000
  • This paper describes prototype Virtual Reality Ship Simulator (VRSS) that we have recently developed next-generation training equipment based on the virtual reality (VR) technology. The inherent defects of conventional ship simulators are enormous costs and difficult system upgrade due to the system construction, such as large mock-up bridge system, wide visual presentations, In this paper, to cope with those problems, we explored VR technology that can give realistic environments in a virtual world. Then we constructed prototype VRSS system, which is, consists of PC-based human sensors, and Databases set having 3D object models and coefficients of Head Related Transfer Functions (HRTFs). 3D-WEBMASTER authoring tool was used as Virtual Reality Modeling Language (VRML). Using the VRSS system, we constructed Port an Passage Simulator for the harbor of INCHON in Korea, and Ship and Sea State Simulator for an arbitrary given sea environmental states by user. Through many simulation tests, we testified the efficiency of developed prototype VRSS by subject assessment with five participants. Then, we present results on the simulation experiments and conclude with discussion of evaluation results.

  • PDF