• Title/Summary/Keyword: Virtual robot

Search Result 364, Processing Time 0.031 seconds

Cognitive and Emotional Structure of a Robotic Game Player in Turn-based Interaction

  • Yang, Jeong-Yean
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.154-162
    • /
    • 2015
  • This paper focuses on how cognitive and emotional structures affect humans during long-term interaction. We design an interaction with a turn-based game, the Chopstick Game, in which two agents play with numbers using their fingers. While a human and a robot agent alternate turn, the human user applies herself to play the game and to learn new winning skills from the robot agent. Conventional valence and arousal space is applied to design emotional interaction. For the robotic system, we implement finger gesture recognition and emotional behaviors that are designed for three-dimensional virtual robot. In the experimental tests, the properness of the proposed schemes is verified and the effect of the emotional interaction is discussed.

Implementation of a Remote Peg-in-Hole Operation using a Two Degrees of Freedom Force-Reflective Joystick

  • Sung K. An;Seung J. Han;Lee, Jang M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.340-345
    • /
    • 1998
  • A virtual reality system is implemented for the operator supervising a robot's operation at a remote site. For this implementation, a two D.O.F force-reflective joystick is designed to reflect the force/torque measured at the end of robotic manipulator and to generate the motion command for the robot by the operator using this joystick. In addition, the visual information that is captured by a CCD camera, is transmitted to the remote operator and is displayed on a CRT monitor. The operator who is holding the force reflective joystick and watching the CRT monitor can resolve unexpected problems that the robot confronts with. That is, the robot performs the tasks autonomously unless it confronts with unexpected events that can be resolved by only the operator. To demonstrate the feasibility of this system, a remote peg-in-hole operation is implemented and the experimental data are shown.

  • PDF

Design of a Virtual Walking Machine for Virtural Reality Interface (가상현실 대화용 가상걸음 장치의 설계)

  • 윤정원;류제하
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1044-1051
    • /
    • 2004
  • This paper described a novel locomotion interface that can generate infinite floor for various surface, named as virtual walking machine. This interface allows users to participate in a life-like walking experience in virtual environments, which include various terrains such as plains, slopes and stair ground surfaces. The interface is composed of two three-DOF (X, Y, Yaw) planar devices and two four-DOF (Pitch, Roll, Z, and relative rotation) footpads. The planar devices are driven by AC servomotors for generating fast motions, while the footpad devices are driven by pneumatic actuators for continuous support of human weight. To simulate natural human walking, the locomotion interface design specification are acquired based on gait analysis and each mechanism is optimally designed and manufactured to satisfy the given requirements. The designed locomotion interface allows natural walking(step: 0.8m, height: 20cm, load capability: 100kg, slope:30deg) for various terrains.

A Navigation Algorithm using Locomotion Interface with Two 6-DOF Robotic Manipulators (ICCAS 2005)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2211-2216
    • /
    • 2005
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF parallel robotic manipulators. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation, using robotic manipulators. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. The walking velocity of the user is directly translated to VR actions for navigation. Finally, the functions of the RPC interface are utilized for each interaction mode. The suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

  • PDF

Evaluation of Wheel-based Mobile Robot Performance for Simple Environmental Obstacles

  • Hong, Ju-Pyo;Ko, Deo-Hyeon;Rhim, Sung-Soo;Lee, Soon-Geul;Kim, Kyu-Ro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1491-1495
    • /
    • 2004
  • For the evaluation of the mobile robot performance in complex environments, the experimental approach in an actual physical environment has been commonly taken. In the physical experimental approach, however, it is quite difficult to define the proper environment for the evaluation due to the lack of commonly agreed characteristics of the test environment. Particularly the number of combinations of types and physical parameters of the obstacles that the mobile robot is expected to deal with is practically unlimited. In an effort to simplify and improve the effectiveness of the evaluation process, we propose an evaluation method using decomposed environmental elements, where we evaluated the performance of the robot for a small group of simple and decomposed obstacle components, for examples projection and slope, instead of a large group of complicated random obstacles. The paper describes a set of simple obstacle models and performance parameters that we have chosen for the effective evaluation process. As an alternative to the physical experimental evaluation approach, in this paper, we used a virtual evaluation environment where the robot and the physical test environment has been modeled using a commercial multi-body dynamics analysis packaged called RecurDyn.

  • PDF

Development of a Simulator for a Mobile Robot Based on iPhone (아이폰 기반의 이동로봇 시뮬레이터 개발)

  • Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • This study presents the remote control of a mobile robot using iPhone based on ad hoc communication. Two control interfaces are proposed to control a mobile robot using iPhone : Remote control by a user and autonomous control. To evaluate the effectiveness of algorithms for trajectory following, a simulator are developed where a virtual robot follows a referenced trajectory in a monitor by iPhone interface. In the proposed simulator, some algorithms are tested how they work well or not for trajectory following of a mobile robot. Comparative results by remote user control and autonomous control are shown. Results of an experiment show that the proposed simulator can be effectively used for testing the effectiveness of autonomous tracking algorithms.

Geometric Path Tracking for a Fish Robot (물고기 로봇의 기하학적 경로 추종)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.906-912
    • /
    • 2014
  • The study of fish robot is a main subject that are related with the propulsive force comparison using a varying amplitude and frequency for body and tail motion trajectory, and the quick turn using a proper trajectory function. In this study, when a fish robot thrusts forward, feedback control is difficult to apply for a fish robot, because body and tail joints as a sine wave are rolled. Therefore, we detect the virtual position based on the path of the fish robot, define the angle errors using the detected position and the look-ahead point on the given path, and design a controller to track given path. We have found that the proposed method is useful through the computer simulations.

Design and Control of a Wearable Robot (Wearable Robot Arm의 제작 및 제어)

  • Jeong, Youn-Koo;Kim, Yoon-Kyong;Kim, Kyung-Hwan;Park, Jong-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.277-282
    • /
    • 2001
  • As human-friendly robot techniques improve, the concept of the wearability of robotic arms becomes important. A master arm that detects human arm motion and provides virtual forces to the operator is an embodied concept of a wearable robotic arm. In this study, we design a 7 DOF wearable robotic arm with high joint torques. An operator wearing this robotic arm can move around freely because this robotic arm was designed to have its fixed point at the shoulder part of the operator. The proposed robotic arm uses parallel mechanisms at the shoulder part and the wrist part on the model of the human muscular structure of an upper limb. To reduce the computational load in solving the forward kinematics and to prevent singularity motions of the parallel mechanism, yawing motion of the parallel mechanisms was separated using a slip ling mechanism. The total weight of the proposed robotic arm is about 4 kg. An experimental result of force tracking test for the pneumatic control system and an application example for VR robot are described to show the validity of the robot.

  • PDF

Virtual Environment Building and Navigation of Mobile Robot using Command Fusion and Fuzzy Inference

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.427-433
    • /
    • 2019
  • This paper propose a fuzzy inference model for map building and navigation for a mobile robot with an active camera, which is intelligently navigating to the goal location in unknown environments using sensor fusion, based on situational command using an active camera sensor. Active cameras provide a mobile robot with the capability to estimate and track feature images over a hallway field of view. In this paper, instead of using "physical sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data. Command fusion method is used to govern the robot navigation. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a command fusion technique is introduced, where the sensory data of active camera sensor for navigation experiments are fused into the identification process. Navigation performance improves on that achieved using fuzzy inference alone and shows significant advantages over command fusion techniques. Experimental evidences are provided, demonstrating that the proposed method can be reliably used over a wide range of relative positions between the active camera and the feature images.