• Title/Summary/Keyword: Virtual prototype

Search Result 275, Processing Time 0.021 seconds

VirtAV: an Agentless Runtime Antivirus System for Virtual Machines

  • Tang, Hongwei;Feng, Shengzhong;Zhao, Xiaofang;Jin, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5642-5670
    • /
    • 2017
  • Antivirus is an important issue to the security of virtual machine (VM). According to where the antivirus system resides, the existing approaches can be categorized into three classes: internal approach, external approach and hybrid approach. However, for the internal approach, it is susceptible to attacks and may cause antivirus storm and rollback vulnerability problems. On the other hand, for the external approach, the antivirus systems built upon virtual machine introspection (VMI) technology cannot find and prohibit viruses promptly. Although the hybrid approach performs virus scanning out of the virtual machine, it is still vulnerable to attacks since it completely depends on the agent and hooks to deliver events in the guest operating system. To solve the aforementioned problems, based on in-memory signature scanning, we propose an agentless runtime antivirus system VirtAV, which scans each piece of binary codes to execute in guest VMs on the VMM side to detect and prevent viruses. As an external approach, VirtAV does not rely on any hooks or agents in the guest OS, and exposes no attack surface to the outside world, so it guarantees the security of itself to the greatest extent. In addition, it solves the antivirus storm problem and the rollback vulnerability problem in virtualization environment. We implemented a prototype based on Qemu/KVM hypervisor and ClamAV antivirus engine. Experimental results demonstrate that VirtAV is able to detect both user-level and kernel-level virus programs inside Windows and Linux guest, no matter whether they are packed or not. From the performance aspect, the overhead of VirtAV on guest performance is acceptable. Especially, VirtAV has little impact on the performance of common desktop applications, such as video playing, web browsing and Microsoft Office series.

Correlation between Head Movement Data and Virtual Reality Content Immersion (헤드 무브먼트 데이터와 가상현실 콘텐츠 몰입도 상관관계)

  • Kim, Jungho;Yoo, Taekyung
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.500-507
    • /
    • 2021
  • The virtual reality industry has an opportunity to take another leap forward with the surge in demand for non-face-to-face content and interest in the metaverse after Covid-19. Therefore, in order to popularize virtual reality content along with this trend, high-quality content production and storytelling research suitable for the characteristics of virtual reality should be continuously conducted. In order for content to which virtual reality characteristics are applied to be effectively produced through user feedback, a quantitative index that can evaluate the content is needed. In this study, the process of viewing virtual reality contents was analyzed and head movement was set as a quantitative indicator. Afterwards, the experimenter watched five animations and analyzed the correlation between recorded head movement information and immersion. As a result of the analysis, high immersion was shown when the head movement speed was relatively slow, and it was found that the head movement speed can be used significantly as an index indicating the degree of content immersion. The result derived in this way can be used as a quantitative indicator that can verify the validity of the storytelling method applied after the prototype is produced when the creator creates virtual reality content. This method can improve the quality of content by quickly identifying the problems of the proposed storytelling method and suggesting a better method. This study aims to contribute to the production of high-quality virtual reality content and the popularization of virtual reality content as a basic research to analyze immersion based on the quantitative indicator of head movement speed.

Design and Implementation of Virtual Reality Prototype Crane Training System using Unity 3D (Unity 3D를 이용한 가상현실 프로토타입 크레인 훈련 시스템 설계 및 구현)

  • Heo, Seok-Yeol;Kim, Geon-Young;Choi, Jung-Bin;Park, Ji-Woo;Jeon, Min-Ji;Lee, Wan-Jik
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.569-575
    • /
    • 2022
  • It is most desirable to build a crane training program in the same evvironment as the actual port, but it has problem such as time constraint and cost. To overcome these limitations, next-generation training programs based on AR/VR are receiving a lot of attention. In this paper, a prototype of a harbor crane training system based on virtual reality was designed and implemented. The system implemented in this paper consists of two elements: an Arduino-based IoT terminal and an HMD equipped with a Unity application program. The IoT terminal consists of 2 controllers, 2 toggle switches, and 8 button switches to process data generated according to the user's operation. The HMD uses Oculus Quest2 and is connected to the IoT terminal through wireless communication to provide user convenience. The training system implemented in this paper is expected to provide trainees with a training environment independent of time and place through virtual reality and to save time and money.

Comparison of Middle Aged Men's Bodice Prototype using 3D Simulation

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.117-126
    • /
    • 2020
  • In this study, a 3D simulation program was used to produce a bodice prototype of a middle-aged male in their 40s and 50s and then analyze the appearance evaluation and airgap, sectional view, color distribution through virtual wearing to compare and analyze the differences between patterns. Through this, it was intended to provide basic data necessary for pattern development to companies that manufacture and produce clothing for middle-aged men. As a result of analyzing, J pattern was analyzed as the most suitable body shape pattern for middle-aged men. E pattern was too tight and L pattern and N pattern had too much spaces. However, J patternt was analyzed that correction was necessary in setting center back and center front length. The aging phenomenon in which the back is slightly bent forward and shoulders are also inclined is expected to appear, so it is necessary to adjust the front-to-back length, shoulder angle, and shoulder length. It is considered that after developing the research pattern by modifying J pattern, it is necessary to develop a body shape prototype for middle-aged men through actual clothing experiments on middle-aged men.

Comparison of User Interaction Alternatives in a Tangible Augmented Reality Environment (감각형 증강현실 기반 상호작용 대안들의 비교)

  • Park, Sang-Jin;Jung, Ho-Kyun;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.417-425
    • /
    • 2012
  • In recent years, great attention has been paid to using simple physical objects as tangible objects to improve user interaction in augmented reality (AR) environments. In this paper, we address AR-based user interaction using tangible objects, which has been used as a key component for virtual design evaluation of engineered products including digital handheld products. We herein consider the use of two types (product-type and pointer-type) of tangible objects. The user creates input events by touching specified parts of the product-type object with the pointer-type object, and the virtual product reacts to the events by rendering its visual and auditory contents on the output devices. The product-type object is used to reflect the geometric shape of a product of interest and to determine its position and orientation in the AR environment. The pointer-type object is used to recognize the reference position of the pointer (or finger) in the same environment. The rapid prototype of the product is employed as a good alternative to the product-type object, but various alternatives to the pointer-type object can be considered according to fabrication process and touching mechanism. In this paper, we present four alternatives to the pointer-type object and investigate their strong and weak points by performing experimental comparison of their various aspects including interaction accuracy, task performance, and qualitative user experience.

Development of Interactive Prototyping Methods applying Behavioral Prototyping Methods for Interactive Experience Design (인터랙티브 경험 디자인에 있어서 행위모형 기법을 응용한 인터랙티브 묘형 기법 개발)

  • 이태일
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.253-260
    • /
    • 2004
  • As the need for more variety of interactive media grows, alternative interaction methods beyond conventional ones such as mice and keyboards are vigorously explored recently. In particular, these new approaches are getting attentions because they can enhance the user experiences in the interaction. Howerver, since they are case-dependent and specific, it still becomes crucial to consider and evaluate the effects and possibilities of interactions. The study aims to explore the ways to design the interactions by applying Behavioral Prototyping Methods in the initial stage of design development, which it calls 'Interactive Prototyping Method'. With the case project, 'Shadow Theater', which is an interactive installation for children, children can play and participate in interactive story-making by wearing hand puppets, casting shadows of hand puppets, and interacting with virtual objects on screen. To explore and design the interactions of Shadow Theater at the initial design process, the study builds an interactive prototype which borrows puppet theater settings and lets children play with hand puppets and other objects. The session of user try-outs with the prototype help to understand what and how they interact with virtual objects, and to improve the interactions.

  • PDF

Development of An Interactive System Prototype Using Imitation Learning to Induce Positive Emotion (긍정감정을 유도하기 위한 모방학습을 이용한 상호작용 시스템 프로토타입 개발)

  • Oh, Chanhae;Kang, Changgu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.239-246
    • /
    • 2021
  • In the field of computer graphics and HCI, there are many studies on systems that create characters and interact naturally. Such studies have focused on the user's response to the user's behavior, and the study of the character's behavior to elicit positive emotions from the user remains a difficult problem. In this paper, we develop a prototype of an interaction system to elicit positive emotions from users according to the movement of virtual characters using artificial intelligence technology. The proposed system is divided into face recognition and motion generation of a virtual character. A depth camera is used for face recognition, and the recognized data is transferred to motion generation. We use imitation learning as a learning model. In motion generation, random actions are performed according to the first user's facial expression data, and actions that the user can elicit positive emotions are learned through continuous imitation learning.

Automation of BIM Material Mapping to Activate Virtual Construction (가상건설 활성화를 위한 BIM 재질 매핑 자동화 기술)

  • Seo, Myoung Bae
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.107-115
    • /
    • 2020
  • Recently, BIM has become mandatory in the construction field, research on various use cases is increasing. In particular, when virtual reality technology, one of the core technologies of the 4th industrial revolution, and BIM are combined, it can be used in various fields such as preliminary design review and construction simulation. Until now, however, virtual reality grafting technology is only used as a simple prototype or as a model house. Also, it is difficult to activate virtual construction because it is expensive to produce high-quality virtual reality contents. Therefore, in this paper, in order to increase the utilization and quality of the virtual construction field, a study was conducted to shorten the material mapping time, which takes a lot of time when producing virtual reality contents using BIM. To this end, object properties were assigned to enable material mapping in the BIM model, and materials most used in the construction field were configured, and automated material function development and final tests were conducted that automatically map properties and materials. For the test, 10 models were used and the test was repeated three times, and the productivity improvement of about 50.16% was finally achieved. In the future, we plan to conduct research on physical data weight reduction based on the advanced material mapping automation function and the large-capacity BIM model.

QoE Framework for Haptic-based 3D Network Virtual Environment (촉감지원 3D 네트워크 가상환경을 위한 QoE 프레임워크)

  • Kim, Jong-Won;Lee, Seok-Hee;Son, Seok-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.7
    • /
    • pp.646-656
    • /
    • 2008
  • In this paper, the prototype of haptic-based NVE (networked virtual environment) QoE (quality of experience) is proposed. The proposed framework plays a role of providing users with realistic feeling by managing the system and network resources efficiently under time-varying networks and heterogeneous systems. Therefore, first IoPH (importance of presence for haptic interaction) is defined to quantitate the sense of real that the users feel now. Then we define the haptic-based NVE components required to satisfy the haptic interaction QoE requirements. Finally, QoE adaptation scheme is suggested, which adapts the haptic-based NVE components to current network and system constraints for better haptic interaction quality.

Virtual Flight Test for Conceptual Lunar Lander Demonstrator (달 착륙선 개념설계형상 검증모델 가상비행시험)

  • Lee, Won-Beom;Rew, Dong-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • The conceptual design lunar lander demonstrator has been developed to use as a test bed for advanced spacecraft technologies and to test a prototype planetary lander capable of vertical takeoff and landing. Size of the lunar lander demonstrator is the same as that of lunar lander conceptually designed, however, the weight of lunar lander demonstrator is designed in 1/6 scale in consideration of gravity difference between moon and earth. The thruster clustering and virtual flight test were performed in the demonstrator fixed on the ground. The demonstrator ground test has been conducted for two months in the test site for the solid motor combustion of the Goheung Flight Center. The purposes of ground test of demonstrator are to demonstrate and verify essential electronics, propulsion system, control algorithm, embedded software, structure and system operation technologies before developing the flight model lander. This paper is described about the virtual flight test including test configuration, test aims and test facilities