• Title/Summary/Keyword: Virtual methods

Search Result 1,427, Processing Time 0.035 seconds

Real-time Flow Animation Techniques Using Computational Fluid Dynamics (전산유체역학을 이용한 실시간 유체 애니메이션 기술)

  • Kang Moon Koo
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.8-15
    • /
    • 2004
  • With all the recent progresses in computer hardware and software technology, the animation of fluids in real-time is still among the most challenging issues of computer graphics. The fluid animation is carried out in two steps - the physical simulation of fluids immediately followed by the visual rendering. The physical simulation is usually accomplished by numerical methods utilizing the particle dynamics equations as well as the fluid mechanics based on the Navier-Stokes equations. Particle dynamics method is usually fast in calculation, but the resulting fluid motion is conditionally unrealistic. The methods using Navier-Stokes equation, on the contrary, yield lifelike fluid motion when properly conditioned, yet the complexity of calculation restrains this method from being used in real-time applications. This article presents a rapid fluid animation method by using the continuum-based fluid mechanics and the enhanced particle dynamics equations. For real-time rendering, pre-integrated volume rendering technique was employed. The proposed method can create realistic fluid effects that can interact with the viewer in action, to be used in computer games, performances, installation arts, virtual reality and many similar multimedia applications.

  • PDF

The Application of Internet 3D Technologies using Java3D and GL4Java (Java3D 및 GL4Java로 구현한 인터넷 3D기술 응용)

  • 김병수;강병익
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.2
    • /
    • pp.222-230
    • /
    • 2002
  • Various virtual reality methods are examined on the internet. In this paper, 3D implementations on the internet are discussed using Java3D and GL4Java which are based on the Java. 3D shoppingmall, real time 3D renderings, and various objects are implemented using Java3D and GL4Java, respectively. Especially with Java3D, the file formats of VRML97, OBJ, and 3DS are implemented using Java3D loader, which shows that object implementation in Java3D is better than other methods. Also, the comparisons between Java3D and GL4Java are discussed.

  • PDF

Analysis of Hydroforming Process for an Automobile Lower Arm by Using Explicit and Implicit FEM (외연적과 내연적 유한요소법에 의한 자동차 로어암의 하이드로포밍 공정해석)

  • Kim, Jeong;Choi, Han-Ho;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.74-81
    • /
    • 2002
  • Recently tube hydroforming has been widely applied to the automotive industries due to its several advantages over conventional methods. In this paper, attention is paid to comparison of an implicit and an explicit finite element method widely used for numerical simulation of a hydroforming process. For an explicit FEM, a huge amount of computational time is required because of the very small time increment to solve a quasi-static problem. Hence, when an explicit FEM is used fDr a hydroforming process, it is general to convert the real problem to a virtual problem with a different processing time and mass density by appropriate scaling factor. However it is difficult to figure out how large the scaling should be adopted enough to ignore the dynamic effects and maintain the desired accuracy. In this paper, the comparison of the results obtained from both methods focus on the accuracy of the predicted geometrical shape and the stress with various scaling factors which are applied to analyze hydroforming process of an automobile lower arm.

WORM-HUNTER: A Worm Guard System using Software-defined Networking

  • Hu, Yixun;Zheng, Kangfeng;Wang, Xu;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.484-510
    • /
    • 2017
  • Network security is rapidly developing, but so are attack methods. Network worms are one of the most widely used attack methods and have are able to propagate quickly. As an active defense approach to network worms, the honeynet technique has long been limited by the closed architecture of traditional network devices. In this paper, we propose a closed loop defense system of worms based on a Software-Defined Networking (SDN) technology, called Worm-Hunter. The flexibility of SDN in network building is introduced to structure the network infrastructures of Worm-Hunter. By using well-designed flow tables, Worm-Hunter is able to easily deploy different honeynet systems with different network structures and dynamically. When anomalous traffic is detected by the analyzer in Worm-Hunter, it can be redirected into the honeynet and then safely analyzed. Throughout the process, attackers will not be aware that they are caught, and all of the attack behavior is recorded in the system for further analysis. Finally, we verify the system via experiments. The experiments show that Worm-Hunter is able to build multiple honeynet systems on one physical platform. Meanwhile, all of the honeynet systems with the same topology operate without interference.

Comparison of Training Effectiveness for IV Injections: Intravenous (IV) Arm Model versus Computer Simulator (마네킹 모델과 컴퓨터 시뮬레이터를 이용한 정맥주사 실습교육의 효과 비교)

  • Hwang, Juhee;Kim, Hyunjung
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.21 no.3
    • /
    • pp.302-310
    • /
    • 2014
  • Purpose: The purpose of this study was to compare the effectiveness of training using an intravenous (IV) arm model versus a computer simulator for IV injections. Method: Study was a quasi-experimental study conducted with 106 nursing students. Participants were divided into two groups: the IV Arm Group using a mannequin arm model (control group) and the Computer Simulator Group using the Virtual IV demonstration (experimental group). Theoretical lectures and video presentations on IV injections were given to both groups. Each group went through the training practice using the IV arm or computer simulator. After the completion of training, questionnaires were given to the students to evaluate their learning attitudes and experiences, self-confidence in IV injection, and satisfaction with the training materials. Results: Student satisfaction with the training materials including the reality, usefulness, and educational effects showed notable differences between the two groups with the Computer Simulator group reporting more positive effects that the IV Arm group. However, there was no statistical difference between the two groups in the categories of learning attitude, learning experience, or self-confidence. Conclusion: While there was a differences in strengths and weaknesses of the two methods, both methods should be considered for practice and further study needs to be done on educational effectiveness.

A Study on the Expression by Anamorphose Phenomenon (아나모르포즈(anamorphose)지각현상에 의한 공간 표현 연구)

  • Lee, Jeong-Yoon;Kim, Kai-Chun
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.4
    • /
    • pp.63-71
    • /
    • 2014
  • Anamorphosis is highly favored in modern days as the atmosphere of pursuing unusual manners is growing while transformation and distortion of images are freely available. This research is to understand the affect of these distorted images on space designs and the close connection between anamorphosis and visual perceptions, and to identify the new perceptual phenomenon created through it, and the methods of expressing those. Four expressional methods were defined through the process of studying Anamorphosis based on its definition by Niceron, examining artworks such as paintings and photographs, and case-studying example spaces of visual perception experiments. Expressing anamorphosis through visual perceptions are broadly categorized to directional, dimensional, flatness, and optical. The analysis of 10 case projects suggests that the experimental spaces offer joys of finding and interpreting metaphorical forms and meanings caused by the four characteristic categories above. Also, they artificially show the boundaries between reality and virtual spaces in 2-dimensional or 3-dimensional spaces, and form hyper-boundaries, new experience, and an internal mechanism that is vague and chaotic. Therefore, this research concludes that anamorphosis which is a distorted perspective, is not only a simple measure to overcome perspectival errors, but is an existence suitable to the current era, that will extend its potential and value in spatial design.

PREDICTION OF THE DETECTION LIMIT IN A NEW COUNTING EXPERIMENT

  • Seon, Kwang-Il
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.4
    • /
    • pp.99-107
    • /
    • 2008
  • When a new counting experiment is proposed, it is crucial to predict whether the desired source signal will be detected, or how much observation time is required in order to detect the signal at a certain significance level. The concept of the a priori prediction of the detection limit in a newly proposed experiment should be distinguished from the a posteriori claim or decision whether a source signal was detected in an experiment already performed, and the calculation of statistical significance of a measured source signal. We formulate precise definitions of these concepts based on the statistical theory of hypothesis testing, and derive an approximate formula to estimate quickly the a priori detection limit of expected Poissonian source signals. A more accurate algorithm for calculating the detection limits in a counting experiment is also proposed. The formula and the proposed algorithm may be used for the estimation of required integration or observation time in proposals of new experiments. Applications include the calculation of integration time required for the detection of faint emission lines in a newly proposed spectroscopic observation, and the detection of faint sources in a new imaging observation. We apply the results to the calculation of observation time required to claim the detection of the surface thermal emission from neutron stars with two virtual instruments.

A Study on Organistic Line Extension on Digital Space - Focus on NOX digital space - (디지털 공간에 나타난 선의 유기체적 확장성에 관한 연구 - NOX 디지털 공간을 중심으로 -)

  • Yu, Mi-Yeon;Yoon, Jae-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.3
    • /
    • pp.148-155
    • /
    • 2008
  • The following research focuses on the formation method of digital space by organistic line extension among various digital formation methods. The paper reflects on the meaning and concept of today's digitalism which enables the application of complex organistic system on space through advanced technology. It also explores the concept of a line in topology which differs in assumptive meaning from traditional Euclidian geometry. The findings of the research are that first, digital space is not optimized, but is a tentative formation in process. A digital space encompasses characteristics such as infinity, possibility, potential, asymmetry, and the force of virtuality such characteristics are expressed through a moving surface constantly changing with direction. Second, a digital space formed by line extension is inseparable and durable since no measurement or dimension is predetermined. Furthermore, its sense of direction and flexibility gives it a feeling of a living organism. Third, a Euclidian methodology called 'NURBS' is being developed to express such a dynamic digital space; this is reflected through three elements, control point, weights, and knots to effectively reflect the characteristics of virtuality. The opportunities of digital space are infinite, and the possibilities of formation methods likewise vast.

Enhanced pruning algorithm for improving visual quality in MPEG immersive video

  • Shin, Hong-Chang;Jeong, Jun-Young;Lee, Gwangsoon;Kakli, Muhammad Umer;Yun, Junyoung;Seo, Jeongil
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.73-84
    • /
    • 2022
  • The moving picture experts group (MPEG) immersive video (MIV) technology has been actively developed and standardized to efficiently deliver immersive video to viewers in order for them to experience immersion and realism in various realistic and virtual environments. Such services are provided by MIV technology, which uses multiview videos as input. The pruning process, which is an important component of MIV technology, reduces interview redundancy in multiviews videos. The primary aim of the pruning process is to reduce the amount of data that available video codec must handle. In this study, two approaches are presented to improve the existing pruning algorithm. The first method determines the order in which images are pruned. The amount of overlapping region between the source views is then used to determine the pruning order. The second method considers global region-wise color similarity to minimize matching ambiguity when determining the pruning area. The proposed methods are evaluated under common test condition of MIV, and the results show that incorporating the proposed methods can improve both objective and subjective quality.

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.