• Title/Summary/Keyword: Virtual map-based navigation

Search Result 31, Processing Time 0.02 seconds

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

Design and Implementation of Navigation-Aid for 3D Virtual Environment using Topic Map (토픽맵을 이용한 3차원 가상환경 탐색항해 도구의 설계 및 구현)

  • Kim Hak-Keun;Song Teuk-Seob;Lim Soon-Bum;Choy Yoon-Chul
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.793-802
    • /
    • 2004
  • Users in 3D virtual environment get limited information which contains mostly images. It is the main reason for users getting lost during their Navigation. Various studies of Navigation-Aid have been done in order to solve this problem. In this study, we applied Topic Maps, which is one of semantic Web techniques, to the navigation in a 3D virtual environment. Topic Maps construct semantic linking maps through defining the relations between topics. Experiments in which Topic Map based Navigation-Aid was applied have shown that the Navigation-Aid was effective when the subjects find a detailed target rather than a highly represented one. Also, offering information around the target helped the users to find the target when they navigated without having specific targets.

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

A Study on 2D/3D Map Navigation System Based on Virtual Reality (VR 기반 2D/3D Map Navigation 시스템에 관한 연구)

  • Kwon Oh-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.928-933
    • /
    • 2006
  • This paper aims to build a 2D/3D map navigation that the user can efficiently operate in terms of feeding attribute information after securing 2D/3D space data. This system provides 2D/3D screen navigation that supports variety of operational visual effects and displays the location that the user is retrieving. Also it presents picture information of buildings with higher resolution and URL, name of store, phone number, other related information. Effectiveness of this system is as follows: first, development and distribution of a new technology of 2D/3D spatial database that changes the previous 2D/3D based system concept to the 2D/3D based one. Second, increase of developmental productivity by utilizing the integrated 2D/3D spatial database for developing various interfaces. Finally, it provides security of the preemptive technological position with world class domestic 2D/3D spatial database technologies.

Virtual Network Embedding through Security Risk Awareness and Optimization

  • Gong, Shuiqing;Chen, Jing;Huang, Conghui;Zhu, Qingchao;Zhao, Siyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2892-2913
    • /
    • 2016
  • Network virtualization promises to play a dominant role in shaping the future Internet by overcoming the Internet ossification problem. However, due to the injecting of additional virtualization layers into the network architecture, several new security risks are introduced by the network virtualization. Although traditional protection mechanisms can help in virtualized environment, they are not guaranteed to be successful and may incur high security overheads. By performing the virtual network (VN) embedding in a security-aware way, the risks exposed to both the virtual and substrate networks can be minimized, and the additional techniques adopted to enhance the security of the networks can be reduced. Unfortunately, existing embedding algorithms largely ignore the widespread security risks, making their applicability in a realistic environment rather doubtful. In this paper, we attempt to address the security risks by integrating the security factors into the VN embedding. We first abstract the security requirements and the protection mechanisms as numerical concept of security demands and security levels, and the corresponding security constraints are introduced into the VN embedding. Based on the abstraction, we develop three security-risky modes to model various levels of risky conditions in the virtualized environment, aiming at enabling a more flexible VN embedding. Then, we present a mixed integer linear programming formulation for the VN embedding problem in different security-risky modes. Moreover, we design three heuristic embedding algorithms to solve this problem, which are all based on the same proposed node-ranking approach to quantify the embedding potential of each substrate node and adopt the k-shortest path algorithm to map virtual links. Simulation results demonstrate the effectiveness and efficiency of our algorithms.

Efficient Controlling Trajectory of NPC with Accumulation Map based on Path of User and NavMesh in Unity3D

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.55-61
    • /
    • 2020
  • In this paper, we present a novel approach to efficiently control the location of NPC(Non-playable characters) in the interactive virtual world such as game, virtual reality. To control the NPC's movement path, we first calculate the main trajectory based on the user's path, and then move the NPC based on the weight map. Our method constructs automatically a navigation mesh that provides new paths for NPC by referencing the user trajectories. Our method enables adaptive changes to the virtual world over time and provides user-preferred path weights for smartagent path planning. We have tested the usefulness of our algorithm with several example scenarios from interactive worlds such as video games, virtual reality. In practice, our framework can be applied easily to any type of navigation in an interactive world.

Virtual Environment Building and Navigation of Mobile Robot using Command Fusion and Fuzzy Inference

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.427-433
    • /
    • 2019
  • This paper propose a fuzzy inference model for map building and navigation for a mobile robot with an active camera, which is intelligently navigating to the goal location in unknown environments using sensor fusion, based on situational command using an active camera sensor. Active cameras provide a mobile robot with the capability to estimate and track feature images over a hallway field of view. In this paper, instead of using "physical sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data. Command fusion method is used to govern the robot navigation. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a command fusion technique is introduced, where the sensory data of active camera sensor for navigation experiments are fused into the identification process. Navigation performance improves on that achieved using fuzzy inference alone and shows significant advantages over command fusion techniques. Experimental evidences are provided, demonstrating that the proposed method can be reliably used over a wide range of relative positions between the active camera and the feature images.

A study on Virtual-City system based on 3D-Web GIS for the disaster prevention of U-Eco city (U-Eco City내 체계적인 방재를 위한 3D-Web GIS기반의 가상도시 시스템 방안 연구)

  • Jo, Byung-Wan;Kim, Do-Keun;No, Seung-Hyun;Yoon, Kwang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.661-664
    • /
    • 2008
  • U-Eco City is promoted nation-wide by development of recent IT technology, method of effective countermeasure disasters, which real-time wire/wireless communication network, and 3D-Web GIS shall be connected that massive database, intelligent service be perceived. U&V-City is the four-dimensional future city that actualizes an intelligent daily ubiquitous computing service by embodying 3D-Virtual City, the reproduction of real world U-City while using Digital map, satellite image, VRML(Virtual Reality Modeling Language), which are presentation tool to describe city components and by efficiently catch and cope about nature and human disasters while employing EAI(External Authoring Interface) that provides HTML&JAVA, and interface for efficient removal/process of massive information/service and also by employing GPS/LBS/Navigation in support of the world-wide orientation concept, and RTLS(Real Time Location System).

  • PDF

3D Navigation Real Time RSSI-based Indoor Tracking Application

  • Lee, Boon-Giin;Lee, Young-Sook;Chung, Wan-Young
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • Representation of various types of information in an interactive virtual reality environment on mobile devices had been an attractive and valuable research in this new era. Our main focus is presenting spatial indoor location sensing information in 3D perception in mind to replace the traditional 2D floor map using handheld PDA. Designation of 3D virtual reality by Virtual Reality Modeling Language (VRML) demonstrates its powerful ability in providing lots of useful positioning information for PDA user in real-time situation. Furthermore, by interpolating portal culling algorithm would reduce the 3D graphics rendering time on low power processing PDA significantly. By fully utilizing the CC2420 chipbased sensor nodes, wireless sensor network was established to locate user position based on Received Signal Strength Indication (RSSI) signals. Implementation of RSSI-based indoor tracking method is low-cost solution. However, due to signal diffraction, shadowing and multipath fading, high accuracy of sensing information is unable to obtain even though with sophisticated indoor estimation methods. Therefore, low complexity and flexible accuracy refinement algorithm was proposed to obtain high precision indoor sensing information. User indoor position is updated synchronously in virtual reality to real physical world. Moreover, assignment of magnetic compass could provide dynamic orientation information of user current viewpoint in real-time.

  • PDF

Virtual City System Based on 3D-Web GIS for U-City Construction (U-City 구현을 위한 3D-Web GIS 기반의 가상도시 시스템)

  • Jo, Byung-Wan;Lee, Yun-Sung;Yoon, Kwang-Won;Park, Jung-Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.389-395
    • /
    • 2012
  • U-City has been promoted nation-wide by development of recent IT technology. This paper studied the concept of 3D-virtual city in order to realize the current Ubiquitous City(U-City) efficiently, and to manage all the RFID/USN monitoring data in the real U-City. 3D-Virtual City is the concept of the reproduction of real world U-City, for embodying Ubiquitous technology while using Digital map, satellite image, VRML(Virtual Reality Modeling Language). U&V-City is the four-dimensional future city that real-time wire/wireless communication network and 3D-web GIS shall be connected that massive database, intelligent service be perceived through employing EAI(External Authoring Interface) that provides HTML&JAVA, and interface for efficient removal/process of massive information/ service and also by employing GPS/LBS/Navigation in support of world-wide orientation concept, and RTLS(Real Time Location System).