• 제목/요약/키워드: Virtual machining

검색결과 69건 처리시간 0.024초

페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석 (Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules)

  • 김석일;이원재;조순주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1008-1013
    • /
    • 2003
  • This paper concerns the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system consisted of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

  • PDF

페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석 (Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules)

  • 김석일;박천홍;조순주
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.896-903
    • /
    • 2004
  • This paper proposes the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high-precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system composed of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

5축 FMS라인의 절삭 칩 처리를 위한 칩 회수처리장치 시뮬레이션에 관한 연구 (A Study on Simulation of Chip Recycling System for the Management of Cutting Chip in 5-Axis FMS Line)

  • 이인수;김해지;김덕현;김남경
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.175-181
    • /
    • 2013
  • The primary element of machining automation is to maximize the utilization of machine tools, which determines the output and lead-time. In particular, 95% of raw materials for wing ribs are cut into chips and 0.6 ton of chips are generated every hour from each machine tool. In order to verify the chip recycling system that controls the chips from the machines in five-axis FMS line, a simulation of the virtual model is constructed using the QUEST simulation program. The optimum speed of the chip conveyor and its operating conditions that directly affect the efficiency of the FMS line are presented including the chip conveyor speed, the maximum capacity of the hopper, and the number of chip compressors.

실험계획법과 유한 요소해석을 이용한 초정밀 대면적 미세 그루빙 머신의 변위 오차 예측 (Displacement Error Estimation of a High-Precision Large-Surface Micro-Grooving Machine Based on Experimental Design Method and Finite Element Analysis)

  • 이희범;이원재;김석일
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.703-713
    • /
    • 2011
  • In this study, to minimize trial and error in the design and manufacturing processes of a high-precision large-surface micro-grooving machine which is able to fabricate the molds for 42 inch LCD light guide panels, the effects of the structural deformation of the micro-grooving machine according to the positions of the X-axis, Y-axis and Z-axis feed systems were examined on the tool tip displacement errors associated with the machining accuracy. The virtual prototype (finite element model) of the micro-grooving machine was constructed to include the joint stiffnesses of the hydrostatic bearings, hydrostatic guideways and linear motors, and then the tool tip displacement errors were measured from the virtual prototype. Especially, to establish the prediction model of the tool tip displacement errors, which was constructed using the positions of the X-axis, Y-axis and Z-axis feed systems as independent variables, the response surface method based on the central composite design was introduced. The reliability of the prediction model was verified by the fact that the tool tip displacement errors obtained from the prediction model coincided well those measured from the virtual prototype. And the causes of the tool tip displacement errors were identified through the analysis of interactions between the positions of the X-axis, Y-axis and Z-axis feed systems.

페룰 가공용 초정밀 무심 연삭기의 열 특성 해석 (Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules)

  • 김석일;조재완
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권1호
    • /
    • pp.32-37
    • /
    • 2007
  • The outer diameter finishing grinding process required for ferrules, which are widely used as fiber optic connectors, is carried out by high-precision centerless grinding machines. In this study, the thermal characteristics of such a machine, for example, the temperature distribution, temperature rise, and thermal deformation, were estimated based on a virtual prototype and the heat generation rates of heat sources related to normal operating conditions. The prototype consisted of a concrete-filled bed. hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The reliability of the predicted results was demonstrated using temperature characteristics measured from a physical prototype. The predicted and measured results indicated that this particular high-precision centerless grinding machine had very stable thermal characteristics.

철선을 이용한 표면 제시 시스템의 구현 (Implementation of a Surface Generating System Employing Wires)

  • 김희국;김도형;김해수;김민건;강대임;박연규
    • 제어로봇시스템학회논문지
    • /
    • 제6권6호
    • /
    • pp.514-521
    • /
    • 2000
  • In this study, a surface generating system with a bundle of wires, which can reproduce a certain range of surface roughness of the objects without direct machining process, is implemented. The system consists of a bundle of wires, a PZT actuator, a vertical table system actuated linearly along two perpendicular axes, and an image processing system. Through the development of the operational software for all of those subsystems by a common language(Visual C++) of the implemented system, the complete process except arrangement of a bundle of wires are automated. Lastly, through the experiments of generating the flat surface of some virtual object and then of measuring the reproduced surface roughness, it is confirmed that the implemented system has excellent performance.

  • PDF

기준평면과 경계상자를 이용한 NC 절삭과정의 그래픽 시뮬레이션 (Graphic Simulation of Material Removal Process Using Bounding Box and Base Plane)

  • 이철수;박광렬
    • 한국CDE학회논문집
    • /
    • 제2권3호
    • /
    • pp.161-174
    • /
    • 1997
  • In this paper, the techniques for graphic simulation of material removal process are described. The concepts of the bounding box and base plane are proposed. With these concepts, a real-time shaded display of a Z-map model being milled by a cutting tool following an NC path can be implemented very efficiently. The base planes make it possible to detect the visible face of Z-map model effectively. And the bounding box of tool sweep volume provides minimum area of screen to be updated. The proposed techniques are suitable for implementation in raster graphic device and need a few memories and a small amount of calculation. Proposed method is written in C and executable on MS-Windows95 and Window-NT.

  • PDF

Web기반 공구 Database의 구축과 최적 절삭조건의 결정

  • 이상욱;김영진
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.464-468
    • /
    • 2003
  • 인터넷의 급성장과 더욱 발전하는 On-line환경에 있어서 기업들간의 정보 교환이 실시간으로 이루어지고 있고, 서로 요구하는 정보의 양질이 높아져감에 따라 현 시점에서 데이터베이스의 관리 및 운용이 대우 중요한 요소가 되었다. 본 연구에서는 (주)대한증석과 경희대학교의 공동연구로 만들어진 KT-Guide라는 전자 카달로그를 Web상으로 구축하여, 피삭재의 절삭에 있어서 사용자가 원하는 가공형식, 공구 및 피삭재를 선택하고 적정 데이터의 입력 후에 최적절삭조건을 실시간으로 알아보고자 함을 목적으로 하고 있다. 이것은 사용자가 절삭을 사용함에 있어서 플랫폼에 제한없이 온라인환경에서 보조도구를 사용하게 하며 궁극적으로는 온라인 상으로 CAD/CAM시스템을 사용함을 목적으로 한다. 한편, 이 전의 연구에 있어서도 Web으로의 확장은 있었으나 많은 부분에 있어서 제한적이었다. DB의 관리에 있어서 MS SQL 2000으로의 Upgrade를 선택하였다. 또한, 프로그램 내부적으로는 기존의 대부분이 HTML Tag를 사용한 ASP형태였다면, 본 논문에 있어서 많은 부분이 XML로 전환되었음을 알 수 있다. 절삭조건의 최적화에는 뉴럴 네트워크를 적용하여 연구된 자료를 이용하였으며, Virtual Machining에 있어서 절삭 조건의 검색 및 Query부분은 XML을 이용하였다.

  • PDF

점소성 유한요소법에 의한 이차원 절삭의 구성인선 해석 (Built-Up Edge Analysis of Orthogonal Cutting By Visco-Plastic Finite Element Method)

  • 김동식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.60-63
    • /
    • 1995
  • The behavior of the work materials in the chip-tool interface in extremely high strain rates and temperatures is more that of viscous liquids than that of normal solid metals. In these circumstances the principles of fluid mechanics can be invoked to describe the metal flow in the neighborhood of the cutting edge. In the present paper an Eulerian finite element model is presented that simulates metal flow in the vicinity of the cutting edge when machining a low carbon steel with carbide cutting tool. The work material is assumed to obey visco-plastic (Bingham solid) constitutive law and Von Mises criterion. Heat generation is included in the model, assuming adiabatic conditions within each element. the mechanical and thermal properties of the work material are accepted to vary with the temperature. The model is based on the virtual work-stream function formulation, emphasis is given on analyzing the formation of the stagnant metal zone ahead of the cutting edge. The model predicts flow field characteristics such as material velocity effective stress and strain-rate distributions as well as built-up layer configuration

  • PDF