• Title/Summary/Keyword: Virtual machines

Search Result 236, Processing Time 0.026 seconds

Design and Implementation of the Virtual Machine for the Redesigned Java Class File (재설계된 자바 클래스 파일을 위한 가상기계의 설계 및 구현)

  • Ko Kwang-Man
    • The KIPS Transactions:PartA
    • /
    • v.12A no.3 s.93
    • /
    • pp.229-234
    • /
    • 2005
  • The virtual machine is a programming environment that supports device and platform independence. So far, virtual machines such as JVM and KVM have been used in a variety of environments for the Java language. Some virtual machines similar to them are also being developed and used. This paper Presents the experiences of extracting elements essential for small sized devices such as PDA from Java Class files(*.class) and designing a converted class file(*.rclass) for runtime efficiency by modifying its class file format and developing its translator. In addition, a virtual machine is developed to receive the translated class file entered and output the runtime results.

Big Data Management System for Biomedical Images to Improve Short-term and Long-term Storage

  • Qamar, Shamweel;Kim, Eun Sung;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.66-71
    • /
    • 2019
  • In digital pathology, an electronic system in the biomedical domain storage of the files is a big constrain and because all the analysis and annotation takes place at every user-end manually, it becomes even harder to manage the data that is being shared inside an enterprise. Therefore, we need such a storage system which is not only big enough to store all the data but also manage it and making communication of that data much easier without losing its true from. A virtual server setup is one of those techniques which can solve this issue. We set a main server which is the main storage for all the virtual machines(that are being used at user-end) and that main server is controlled through a hypervisor so that if we want to make changes in storage overall or the main server in itself, it could be reached remotely from anywhere by just using the server's IP address. The server in our case includes XML-RPC based API which are transmitted between computers using HTTP protocol. JAVA API connects to HTTP/HTTPS protocol through JAVA Runtime Environment and exists on top of other SDK web services for the productivity boost of the running application. To manage the server easily, we use Tkinter library to develop the GUI and pmw magawidgets library which is also utilized through Tkinter. For managing, monitoring and performing operations on virtual machines, we use Python binding to XML-RPC based API. After all these settings, we approach to make the system user friendly by making GUI of the main server. Using that GUI, user can perform administrative functions like restart, suspend or resume a virtual machine. They can also logon to the slave host of the pool in case of emergency and if needed, they can also filter virtual machine by the host. Network monitoring can be performed on multiple virtual machines at same time in order to detect any loss of network connectivity.

Construction of a Verified Virtual NC Simulator for the Cutting Machines at Shipyard Using the Digital Manufacturing Technology (디지털 매뉴팩쳐링 기법을 이용한 절단기기의 검증된 가상 NC 시뮬레이터 구축)

  • Jung, Ho-Rim;Yim, Hyun-June;Lee, Jang-Hyun;Choi, Yang-Ryul;Kim, Ho-Gu;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.64-72
    • /
    • 2005
  • Digital manufacturing is a technology to simulate the real manufacturing process using the virtual model representing the physical schema and the behavior of the real manufacturing system including resources, processes and product information. Therefore, it can optimize the manufacturing system or prevent the bottleneck processes through the simulation before the manufacturing plan is executed. This study presents a method to apply the digital manufacturing technology for the steel cutting process in shipyard. The system modeling of cutting shop is carried out using the IDEF and UML which is a visual modeling language to document the artifacts of a complex system. Also, virtual NC simulators of the cutting machines are constructed to emulate the real operation of cutting machines and NC codes. The simulators are able to verify the cutting shape and estimate the precise cycle time of the planned NC codes. The validity of the virtual model is checked by comparing the real cutting time and shape with the simulated results. It is expected that the virtual NC simulators can be used for accurate estimation of the cutting time and shape in advance of real cutting work.

Multiscale Virtual Testing Machines of Concrete and Other Composite Materials: A Review (콘크리트 및 복합재료용 멀티스케일 가상 시험기계에 관한 소고)

  • Haile, Bezawit F.;Park, S.M.;Yang, B.J.;Lee, H.K.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.173-181
    • /
    • 2018
  • Recently composite materials have dominated most engineering fields, owing to their better performance, increased durability and flexibility to be customized and designed for a specific required property. This has given them unprecedented superiority over conventional materials. With the help of the ever increasing computational capabilities of computers, researchers have been trying to develop accurate material models for the complex and integrated properties of these composites. This has led to advances in virtual testing of composite materials as a supplement or a possible replacement of laboratory experiments to predict the properties and responses of composite materials and structures. This paper presents a review on the complex multi-scale modelling framework of the virtual testing machines, which involve computational mechanics at various length-scales starting with nano-mechanics and ending in structure level computational mechanics, with a homogenization technique used to link the different length scales. In addition, the paper presents the features of some of the biggest integrated virtual testing machines developed for study of concrete, including a multiscale modeling scheme for the simulation of the constitutive properties of nanocomposites. Finally, the current challenges and future development potentials for virtual test machines are discussed.

Protecting Technique for the Executable File of Virtual Machines (가상기계 실행파일을 위한 보호 기법)

  • Park, Ji-Woo;Yi, Chang-Hwan;Oh, Se-Man
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.5
    • /
    • pp.668-678
    • /
    • 2007
  • The development of a wire and wireless communication technologies might permit easily accessing on various information. But, the easiness of accessing information has basically the problem of an unintended information outflow. An executable file which has key algorithms, data and resources for itself has very weak point in the security. Because the various information such as algorithms, data and resources is included in an executable file on embedded systems or virtual machines, the information outflow problem may appear more seriously. In this paper, we propose a technique which can be protecting the executable file contents for resolving the outflow problem through the encryption. Experimentally, we applied the proposed technique to EVM-the virtual machine for embedded system and verified it. Also, we tried a benchmark test for the proposed technique and obtained reasonable performance overhead.

  • PDF

Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

  • Cui, Chaoyuan;Wu, Yun;Li, Yonggang;Sun, Bingyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1722-1741
    • /
    • 2017
  • Intrusion detection techniques based on virtual machine introspection (VMI) provide high temper-resistance in comparison with traditional in-host anti-virus tools. However, the presence of semantic gap also leads to the performance and compatibility problems. In order to map raw bits of hardware to meaningful information of virtual machine, detailed knowledge of different guest OS is required. In this work, we present VDSM, a lightweight and general approach based on driver separation mechanism: divide semantic view reconstruction into online driver of view generation and offline driver of semantics extraction. We have developed a prototype of VDSM and used it to do intrusion detection on 13 operation systems. The evaluation results show VDSM is effective and practical with a small performance overhead.

Development of the CAD/CAM System for CNC Universal Cylindrical Grinding Machines (CNC 만능 원통연삭기의 CAD/CAM 시스템 개발)

  • 조재완;김석일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.312-318
    • /
    • 2000
  • In this study, an exclusive CAD/CAM system is developed for enhancing the effectiveness and productivity of CNC universal cylindrical grinding machines on which the external/facing/internal grinding cycles and the wheel dressing cycles are integratively carried out. The CAD/CAM system can manage the various processes such as geometry design, NC code generation, NC code verification, DNC operation, and so on. Especially, the feature-based modeling concept is introduced to improve the geometry design efficiency. And the NC code verification is realized by virtual manufacturing technique based on the real-time analysis of NC codes and the boolean operation between workpiece and wheel.

  • PDF

Virtual Manufacturing for an Automotive Company(VII) : Construction and Application of a Virtual Press Shop (자동차 가상생산 기술 적용(VII) : 프레스 디지털 가상공장의 구축과 활용)

  • Kuk, Seung-Ho;Lee, Sang-Seok;So, Soon-Il;Noh, Sang-Do;Kim, H.S.;Shim, K.B.;Kim, J.Y.
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.322-332
    • /
    • 2008
  • Digital Virtual Manufacturing is a technology to facilitate effective product developments and agile productions by digital model representing the physical and logical schema and the behavior of real manufacturing system, and it includes product, resources, processes and plant. For successful applications of this technology, a digital virtual factory as a well-designed and integrated environment is essential. In this research, we constructed a sophisticated digital virtual factory of a Korean automotive company's press shop. For efficient constructions of a digital virtual factory useful to kinematic simulations and visualizations, we analyzed entire business process and detailed activities of press engineering. Also, we evaluated geometries, structures, characteristics and motions of a plant and machines in press shop. The geometric model and related data of a virtual press shop are built and managed by a modeling standard defined in this paper. The virtual manufacturing simulation of press machines is conducted to evaluate kinematic motions, cycle time and locations of components using geometric models and related data. It's for interference checks and productivity improvements. We expect that this virtual press shop helps us to achieve great savings in time and cost in many manufacturing preparation activities in the new car development process of automotive companies.

Analysis of Feedback Control CPU Scheduling in Virtualized Environment to Resolve Network I/O Performance Interference (가상화 환경에서 네트워크 I/O 성능 간섭 해결을 위한 피드백 제어 CPU 스케줄링 기법 분석)

  • Ko, Hyunseok;Lee, Kyungwoon;Park, Hyunchan;Yoo, Chuck
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.9
    • /
    • pp.572-577
    • /
    • 2017
  • Virtualization allows multiple virtual machines to share the resources of a physical machine in order to utilize idle resources. The purpose of virtualization is the efficient allocation of resources among virtual machines. However, the efficient allocation of resources is difficult because the workload characteristics of each virtual machine cannot be understood in the current virtualization environment. This causes performance interference among virtual machines, which leads to performance degradation of the virtual machine. Previous works have been carried out to develop a method of solving such performance interference. This paper introduces a representative method, a CPU scheduling method that guarantees I/O performance by using feedback control to solve performance interference. In addition, we compare and analyze a model-based feedback control method and a dynamic feedback control method.

Design of Testbed for Agile Computing of MapReduce Applications by using Docker

  • Kang, Yunhee
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.29-33
    • /
    • 2016
  • Cloud computing makes extensive use of virtual machines that permit for workloads, as well as resource usage, to be isolated from one another, and a hypervisor can be used by a virtual machine to construct cloud computing infrastructure. However, the hypervisor has high resource usage when constructing virtual machines, which results in a waste of allocated resources when not activated. Docker provides a more light-weight method to obtain agile computing resources based on a container technique that handles this problem. In this study, we have chosen this specific tool due to the increasing popularity of MapReduce and cloud container technologies such as Docker. This study aims to automatically configure Twister workloads for container-driven clouds. Basically, this is the first attempt towards automatic configuration of Twister jobs on a container-based cloud platform VM for many workloads.