
66 시스템엔지니어링

Journal of KOSSE. (2019. 12) Vol. 15, No. 2 pp. 66-71 

DOI: https://doi.org/10.14248/JKOSSE.2019.15.2.066

www.kosse.or.kr

ISSN (print) : 1738-480X

ISSN (online) : 2288-3592

Shamweel Qamar,
1)
 Eun Sung Kim,

2),3)
 Peom Park

1),2),3)*

1) Systems Biomedical Informatics, Ajou University

2) Industrial Engineering, Ajou University

3) Humintec, Co. Ltd.

Abstract : In digital pathology, an electronic system in the biomedical domain storage of the files is a big 

constrain and because all the analysis and annotation takes place at every user-end manually, it becomes 

even harder to manage the data that is being shared inside an enterprise. Therefore, we need such a storage 

system which is not only big enough to store all the data but also manage it and making communication of that 

data much easier without losing its true from. A virtual server setup is one of those techniques which can 

solve this issue. We set a main server which is the main storage for all the virtual machines(that are being 

used at user-end) and that main server is controlled through a hypervisor so that if we want to make 

changes in storage overall or the main server in itself, it could be reached remotely from anywhere by just 

using the server’s IP address. The server in our case includes XML-RPC based API which are transmitted 

between computers using HTTP protocol. JAVA API connects to HTTP/HTTPS protocol through JAVA 

Runtime Environment and exists on top of other SDK web services for the productivity boost of the running 

application. To manage the server easily, we use Tkinter library to develop the GUI and pmw magawidgets 

library which is also utilized through Tkinter. For managing, monitoring and performing operations on virtual 

machines, we use Python binding to XML-RPC based API. After all these settings, we approach to make the 

system user friendly by making GUI of the main server. Using that GUI, user can perform administrative 

functions like restart, suspend or resume a virtual machine. They can also logon to the slave host of the pool 

in case of emergency and if needed, they can also filter virtual machine by the host. Network monitoring can 

be performed on multiple virtual machines at same time in order to detect any loss of network connectivity.

Key Words : Hypervisor, XML-RPC, HTTP, JAVA Runtime Environment, Tkinter, Python



시스템엔지니어링 학술지 제15권 2호. 2019. 12 

Big Data Management System for Biomedical Images to Improve Short-term and Long-term Storage 67

1. Introduction

Pathology slides are extracted in the form of 

software image formats like .svs. The problem 

with those pathology slides is their inability to 

be shared among entities because their mag-

nification is very high, and the size goes up to 

1 gigabyte. To be able to diagnose the tumorous 

region, their quality cannot be compromised. So, 

we imported from the slide scanners to the 

database server containing WiSe and different 

type of entity databases. Images are accessed 

by the workstations through a image servers 

and image servers store and sequence the 

data to be reachable to the workstations. 

Architecture flow of the management system 

is shown in Figure 1.

Database is an important component in making 

this system work and there are two main 

components in that respect that we should talk 

about. The workflow of WISE database and 

SHS application are very necessary clogs of 

our application to make sure it has compatible 

efficiency.

1.1 WISEDB Flow Diagram

WISE is an already build-in database tech-

niques for storing text and images as well. It’s 

exchange of data and information with storage 

and IDS7/SHS is shown in Figure 2. It provides 

(among other things) the following features: 

∙ It replies on communication tests from 

remote applications. 

∙ It allows remote applications (modalities 

[Figure 1] System architecture showing the flow of data from databases to workstation

[Figure 2] WISE database flow diagram showing exchange 

with IDS7/SHS and storage device



시스템엔지니어링 학술지 제15권 2호. 2019. 12 

68 시스템엔지니어링

and image workstations) to send images 

to it. 

∙ It allows remote applications to commit 

storage of sent images.

∙ It allows remote applications to query the 

WISE database and retrieve images. 

∙ Send images to a remote application (e.g. 

a workstation or a DICOM archive). 

∙ Fetch images from remote applications 

(typically a DICOM archive.

1.2 SHS Application Flow Diagram

SHS provides (among other things) the 

following features:

∙ Store and retrieve of images stored on a 

CD media. Media import and export is 

residing on IDS7.Media export is also an 

operation on SHS when CD/DVD Production 

Center is used.

∙ Print images.

∙ Send images to a remote application (e.g. 

a workstation or a DICOM archive) via 

WISE.

∙ Fetch images from remote applications 

(typically a DICOM archive) via WISE.

SHS contains one Application Entity (AE), 

Q/R SCU which only has one instance. It’s 

exchange of data and information with storage 

and IDS7 is shown in Figure 3.

2. Application

2.1 Setup of VMware Data Center

The connection from the main physical data 

center and the virtual machines (VM) is in 

multiple layers (shown in Figure 4). Main 

storage is set through a hypervisor which 

controls the data center to make it virtual. 

From the user’s perspective, a management 

server is set for them to access the virtual 

machines through putting their IP addresses.

Data center has several constituents that 

have some important customized factors according 

to our big data system. One of them is hyper-

visor, a layer to control and allocate the storage 

array in order to design a data center for 

virtualization. There were two options for the 

[Figure 4] Data center setup from storage device to the 

virtual machines

[Figure 3] SHS flow diagram showing exchange with 

IDS7 and storage device



시스템엔지니어링 학술지 제15권 2호. 2019. 12 

Big Data Management System for Biomedical Images to Improve Short-term and Long-term Storage 69

hypervisor to use for our system. First is XEN 

server which has an open source access and 

the setup is easy to manage. It is free of cost 

on some scale and enterprise readiness is 

questionable. The other option is XEN server 

pool comprised of multiple XenServer hosts 

bound together as a single managed entity. 

Then virtual machines (VMs) can be started 

on any XenServer host in the pool that has 

sufficient available resources such as CPU or 

memory. And apparently, XenServer is the 

obvious choice in our case.

2.2 XEN server requirements

A resource pool is a homogeneous aggregate 

of one or more XenServer hosts. A XenServer 

pool is homogeneous when the CPUs on the 

server joining the pool are the same (in terms 

of vendor, model, and features) as the CPUs 

on servers already in the pool. When we join a 

host to a pool, XenServer will enforce additional 

constraints, in particular: It is not a member of 

an existing resource pool, it has no shared 

storage configured ,there are no running or 

suspended Virtual Machines on the XenServer 

host you are joining to the pool and there are 

no active operations on the VMs in progress 

such as restart or shutdown. When we want to 

join a new host :Clock of the host joining the 

pool is synchronized to the same time as the 

pool master (for example, by using NTP) ,its 

primary management interface is not bonded 

(you can configure this once the host has 

successfully joined the pool) and its management 

IP address is static (either configured on the 

host itself or by using an appropriate con-

figuration on your DHCP server).

2.3 Creating a XenServer resource pool

Resource pools can be created using either 

the XenCenter management console or the 

command-line interface (CLI). When you join 

a new host to a resource pool, the joining host 

synchronizes its local database with the 

pool-wide one, hosted and managed by the 

pool master, and inherits some settings from 

the pool:

1. VM, local, and remote storage configuration 

is added to the pool-wide database.

2. The joining host inherits existing shared 

storage repositories in the pool and 

appropriate PBD (Physical Block Devices) 

records are created, so that the new host 

can access existing shared storage auto-

matically

3. Networking information is partially inherited 

by the joining host. The structural details 

of NICs, VLANs, and bonded interfaces 

are all inherited, but policy information is 

not. This policy information, which must 

be reconfigured, includes the IP addresses 

of management NICs, which are preserved 

from the original configuration, the location 

of the primary management interface and 

dedicated storage NICs

2.4 XenServer API Setup

The software layer of hypervisor boots first 

which runs in 64-bit mode. Next, the control 

domain boots, which is a 32-bit Linux-based 

embedded distribution. The control domain is a 

normal XenServer VM and as shown in Figure 5, 

it runs inside the control domain. XenServer 

includes a XML-RPC based API, which are 

transmitted between computers using HTTP. 

There are five SDKs available, one for each of 



시스템엔지니어링 학술지 제15권 2호. 2019. 12 

70 시스템엔지니어링

C, C#, Java, PowerShell, and Python. VI Java 

API for prior project with vSphere ESXi is 

used which is a set of Java libraries that sits 

on top of existing vSphere SDK Web Services 

interfaces.It provides a full managed object 

model and run-time type checking, resulting 

in a dramatic productivity boost. The Source 

Code contains Tkinter library to develop GUI 

for easily managing XenServers and Pmw 

megawidgets library (which itself uses Tkinter 

as a base). Python Binding is utilized for 

XML-RPC based API for managing, monitoring, 

and performing operations on virtual machines. 

Classes used in this system are both for 

architecture perspective and from the user’s 

perspective like session, subject, event, VM etc.

3. XenServer application features

Multiple purpose features of our system 

allow user to connect to a pool of XenServers 

via a GUI application. User can filter VMs in 

the pool by host and they can perform some 

administrative functions like restart VM, suspend 

VM, resume VM, etc. In-case of emergency, 

user can logon to the slave host of the pool. 

One of the advanced monitoring features is 

that user can set advanced network monitoring 

on multiple VMs at the same time. If network 

monitoring detects a loss of network con-

nectivity for a VM, a snapshot of that VM is 

automatically taken.

4. Conclusion

There are existing systems which can be 

manipulated as pioneer work for our requirement. 

The key is to know our system’s requirement 

i.e. how much data is going to be employed, 

the number of patients, the load of users from 

multiple virtual machines etc. If practically 

installed, the system can extremely cost effective 

as we do not have to install hardware system 

at every work station and because of the use 

single server, the workload management is 

effectively convenient for the system. From 

the literature review, it is obvious that visu-

alization and sharing of images can be easily 

done even when there are multiple users on 

multiple virtual machine.

Acknowledgement

This research was supported by a grant of 

the Korea Health Technology R&D Project 

through the Korea Health Industry Development 

Institute (KHIDI), funded by the Ministry of 

Health & Welfare, Republic of Korea (grant 

number : HI18C0316).”

References

1. Khushi M, Carpenter JE, Balleine R, Clarke 

[Figure 5] API setup of XenServer controlling virtual 

machines



시스템엔지니어링 학술지 제15권 2호. 2019. 12 

Big Data Management System for Biomedical Images to Improve Short-term and Long-term Storage 71

CL. Development of a data entry auditing 

protocol and quality assurance for a tissue bank 

database. Cell and Tissue Banking ePub Feb 18, 

2011.

2. Potters L, Kattan MW, Fearn P. A chrono-

logical database to support outcomes research in 

prostate cancer. Int J Radiat Oncol Biol Phys 

56:1252, 2003.

3. DICOM Conformance Statement Sectra PACS 

and Sectra VNA Sectra PACS, Version 19.3, 

October 2017.

4. Allan,C. et al. (2012) OMERO: flexible, model- 

driven data management for experimental biology. 

Nat. Methods, 9, 245.

5. de Chaumont,F. et al. (2012) Icy: an open 

bioimage informatics platform for extended 

reproducible research. Nat. Methods, 9, 690– 

696.

6. Kvilekval,K. et al. (2010) Bisque: a platform 

for bioimage analysis and management. Bioin-

formatics, 26, 544–552.

7. Lobet,G. et al. (2013) An online database for 

plant image analysis software tools. Plant Methods, 

9, 38.

8. Carpenter JE, Miller JA et al (2007) The Caisis 

system for biorepository data requirements— Breast 

cancer tissue bank, Australia. Cell Preserve 

Technol 5(1):51–52.

9. Fan J-W, Friedman C (2008) Semantic 

reclassification of the UMLS concepts. Bio-

informatics 24(17):1971–1973.

10. Fearn P, Regan K et al (2007) Lessons 

learned from Caisis: anopen source, web-based 

system for integrating clinical practice and 

research. Computer-based medical systems, 

2007. CBMS ‘07. In: Twentieth IEEE international 

symposium on 2007.

11. Maré e, R. et al. (2013a) Extremely randomized 

trees and random subwindows for image clas-

sification, annotation, and retrieval. Invited chapter 

indecision Forests in Computer Vision and 

Medical Image Analysis, Advances in Computer 

Vision and Pattern Recognition, pp. 125–142.




