THEAIE K S TS 2T 7Hd71AHe 2H R 73

229

] = Hlol o o] A o] A a) 3
AAAE Aup F Y& Y3 HAA7Ae AA 2 8
T
2 of
743 71A|(Virtual Maching; VM) dojdl it #Ax] SPA 2 ZPE =gA S 9 z2aY A3 SHolch AR Anp dof
& 98 JVM, KVM 5ol tg# 840A A2 gom #48 /M 7147 734‘%5401 B89m qn. ¥ BEAAE A A4 3Y
(x.class) X PDASE 22 ATE AX oA t=A Ho3t 942 2530 A8 T84S 938 Fda Jdo ¥RE AF4E Fg2 539

(+rclass)& AAGT I3 AEAE 22 HdE QR o} 49 ZHE Ay /MIVIAE FEIASD

W@z E pEein.
191 Apbt 224 Ije, WD, TN, BH& 2D, IEZAJE

Design and Implementation of the Virtual Machine for the Redesigned
Java Class File

Kwang-Man Ko'

ABSTRACT

The virtual machine is a programming environment that supports device and platform independence. So far, virtual machines such as
JVM and KVM have been used in a variety of environments for the Java language. Some virtual machines similar to them are also being
developed and used. This paper presents the experiences of extracting elements essential for small sized devices such as PDA from Java
Class files(*.class) and designing a converted class file(*.rclass) for runtime efficiency by modifying its class file format and developing its

translator. In addition, a virtual machine is developed to receive the translated class file entered and output the runtime results.

Key Words : Java Class File, Translator, Virtual Machine, Linker&Loader, Interpreter

1. Introduction

The virtual machine is a programming run-time envi-
ronment that supports device and platform independence.
So far, virtual machines such as JVM and KVM have
been used in a variety of environments for the Java pro-
gramming language. Some virtual machines similar to
them are also being developed and used. Recently, how-
ever, developing virtual machines for embedded systems
to run applications written in an advanced language such
as Java in smali-sized devices other than computer sys-
tems are beginning to be developed(8].

Since applications are susceptible to the hardware and
operating systems when they are executed, source files
should be compiled to create native codes suitable to the

¥ o] =R SxetAivy 54729 F(ZAW E | R0O1-2002-000-00041-0)
A9 eI A

A AFHARLTER 2ap

:’:- 200419 1049 69, AAMEE 1 20054 54 99

machine used. Therefore, any change in hardware and
operating systems will result in the development of new
compilers, API modification and the rebuilding of the de-
velopment environment. To address this issue, the virtual
machine is used to interface between the system and the
application. The Java compiler doesn’t create any object
code for a specific machine, but creates an intermediate
code for the virtual machine and runs it in the JVM.
There are several constraints in putting the developed
virtual machine in a platform. Especially when putting it
on a small device, you will face several constraints that
you wouldn’t in Windows or UNIX; the virtual machine
should be small in size. Mobile devices manage data in
database, not in the file system, as it uses the flash
memory. This is the most distinguished difference be-
tween small mobile devices and PCs. It is the virtual
machine that allows an application to run in different de-
vices without modifying or translating the application.
Currently virtual machines are being developed for differ-

230 FEMRASI=RA A K12-AH 33 (2005.6)

ent systems and increasingly adopted among small
devices. However, since small devices have limited sys-
tem resources, some solutions should be come up with to
manage the resources efficiently[3].

The size of Java classfiles has long been recognized as
an issue, especially for embedded devices. A number of
efforts have been made to reduce the size, both as a
transmission format and as an execution format.
Paugh[10] developed techniques for compressing classfile
components for transmission, and achieved sizes ranging
from 17% to 49% of the comparable JAR files. Rayside et
all9], in contrast, focused on execution format, specially
reducing constant pool size and code size. Reductions in
JAR file size of roughly 50% were obtained through opti-
mizations of the constant pool, and smaller improvements
were realized through code optimizations. Clausen et
all11]. developed a compressed bytecode scheme using
macros, achieving spaces savings of around 30%, but at a
runtime cost of up to 30%. Tip et all12]. developed tech-
niques for extracting only the components necessary for a
particular application form a set of classfiles, with the re-
sulting achieves reduced to 37.5% of their original size.

This paper introduces the experiences of designing and
implementing a virtual machine based on JVM, KVM and
Waba virtual machine. To do this, first a translator was
developed to convert Java class files automatically. Second,
a virtual machine for translated class files was designed
and implemented. Finally, the developed virtual machine
was verified by showing that the virtual machine received
the translated class file and output the runtime results.

2. Related works

2.1 Java Class File

Class files have six main sections: header, constant
pool, fields, methods and attributes. The constant pool is
similar to traditional compiler symbol tables. The byte-
code notion of attribute is interesting : every class, field
and method mat have attributes of arbitrary structure.
Sun predefines a number of attributes, such as ‘Code’
that contain the instructions of a method body. Physically,
class files are a stream of 8-bit unsigned bytes. All val-
ues that require more than 8-bits are represented as a
sequence of bytes. The JVM specification uses the nota-
tion ul, u2, and u4 to represent one-byte, two-byte and
four-byte sizes respectively(the u stands for ‘unsigned’)
{21091t10l.

The Constant pool is a table of variable length struc—
tures of type cp_info. cp_info records are used to repre-

sent class names, field names, method names, other string
constants and numeric constants. The constant_pool_count
is the number of cp_info entries in the constant_pool
array. Attribute structures are used extensively through-
out class files to describe classes, fields, methods and
even other attributes. The JVM specification defines a set
of standard attributes, but compiler writers are free to
create new attribute types. The methods array contains
all the methods(both instance and static) declared in this
class or interface. Each entry is a variable length struc-
ture of the type method_info that contains a complete de-
scription of the JVM code for that particular method. The
methods_count is the number of methods declared in this
class. It should be noted that a variable number of attrib-
ute_info structures can be included in this structure. The
code attribute is only used in the attributes table in the
method_info structure. It contains all the JVM opcodes for
a single Java method. Every method may contain at most
one code attribute. A JVM instruction consists of an op-
code specifying the operation to be performed, followed
by zero or more operands. Each opcode is represented by
one byte, and therefore the JVM can support up to 256
different opcodes, although only 204 are defined. The opc-
odes can be classified into distinct groups according to
the type of operands they accept. Opcodes for method in—
vocation take an index to a Methodref record; opcodes for
object creation take an index to a Classref record in the
constant pool. Another opcode group that is related to
transferring control of execution accepts a 2-byte operand
that is used an an offset to the code array. There are
only two opcodes with a variable number of operands:
tableswitch and lookupswitch, which are used for compil-
ing switch statements.

2.2 Waba VM

Waba VMI13] is a Java virtual machine runtime envi-
ronment developed for small devices using Palm and
Window CE as their OS. It follows Java grammar rules
and operates on the information of the Java class files,
but it uses new APl as it is not compatible with the
API for the existing JVM.

Waba uses 202 bytecodes defined according to the
JVM specification, but no bytecodes are defined for long
and double variables, thread and exception handling re-
lated commands. The class file format follows the defi-
nition by the JVM specification, but the some information
is omitted. When the virtual machine begins to operate, it
allocates the stack and heap memory area, goes through
the initiation, loads class files and gains the runtime in-

formation to run bytecodes. The runtime information gen-
erated while the loading process is stored. The in-
formation referred while running has a structure to store
constant pool, fields and methods. The first step of the
class loader is to check whether the class to load is
loaded in memory. If not, check whether the class is a
system class. If it is a system file, modify the path to
Waba API class path to prevent the existing Java class
file from loading. Use nativeClassLoad(), which is used to
obtain the class file from actual file, to load the class file
to memory to get the start point. And then use each off-
set information of the class to parse information on
Constans pool, this class, super class, field, method. In
the last step of loading, go through ClassHook() binding
process to call native method. If the file to load is a
static class, run cinit() method to initialize the static field
value of the class. At this time, information parsed while
loading is stored in WClass. These loaded classes are in
hash structure of WClass and referred when the inter-
preter is run.

3. Virtual Machine for the Redesigned Java Class
File

3.1 Overview

The total system is composed of the translator to con-
vert the Java class file(*.class) to redesigned class
file(* rclass) and the virtual machine that receives the re-
designed class file as a input and output runtime results
as shown in (Fig. 1).

Virtual
*.class TRARLATOR *.relass . Results
Machine

(Fig. 1) Overview of the Virtual Machine for the Redesigned
Java Class File

3.2 Redesigned Class file format and Translator
In the redesigned class file, the followings are rede-
signed for runtime efficiency by modifying its class file
format and developing its translator as shown in (Fig. 2).
« Insert source file index in the header part
* code area reallocation
-move bytecode information in the code attribute
section to code area
* 1 byte tag insert

And the followings are removed from the original Java
class file format(*.class).

MHEAE A SeHA MAUS 2o Thy7IA|e) 84 2 78 281

* Remove interface part
- not supports the interface
» attribute information remove in the field and method
area
- move attribute information in the field and method
area to code area.

In the redesigned parts, the method area is separated
to the code part of bytecode area. This improves the
handling efficiency when linking/loading class files in a
virtual machine by separating bytecodes from information
and meta information in each area of class. Collecting and
managing the distributed bytecodes in property in-
formation of method areas provides easy access to each
bytecode.

The translator reads and analyzes binary information in
class files through a process shown (Fig. 3) and produces
class information according to the new *.rclass format.

The translator receives *class files as input, extract
relevant information in each area, store it in the array or
structure format and then rearrange the information ac-
cording to *rclass format. The information added to the
new format is one obtained from analyzing the extracted
information and when the file is rearranged, it is recorded
in the binary file. When the method area is processed,
the bytecode is recorded in the end part of the format.

Beader

UIF I__;] I:E O [}
megr [] (1]
Header T e
o O CL]
reference D 5
Cotstant Pocls ——»l o '_—> rambpe I%[@"m’: pu
oss —{] [(. M
wcessPlag this npa
e — OO OJ I J
count accessFlag name desaipter
wet —{] [[0 [[4
cound acessFlag nane desaipter maxStak maxLocal
= o 0 4l @ 6T O

(Fig. 2) Redesigned Class File Structure

constant poul
Analysis/
extraction

class information
Analysis/
extraction

*.class

translator core |— *.rclass

field information
Analysis/
extraction

method infermation
Analysis/
extraction

(Fig. 3) Java Class File Translator(from *.class to *.rclass)

232 HEXCIES=EX A M12-AZ XI352(2005.6)

3.3 Virtual Machine Implementation

The virtual machine is implemented through a process
as following(core routine). The virtual machine is largely
divided into definition, initialization and runtime parts.
The virtual machine is developed divided into one core
file and two porting-related sources. The program source
starts from the main() function and receives class file
name as function parameter when it runs.

Type definition : Defines the data structure to use for
storing class file information and implement the virtual
machine and mnemonic name for each bytecode to refer
to when implement the interpreter.

Class access : When the class file is loaded, the binary
information stored in the file is also loaded onto memory.
These are macro-defined functions to obtain information
on the class file. These functions are helpful when using
the pointer vatues of the file image to get specific values
of each area. These are used most when loading/linking
and by interpreter.

VM initialization : The virtual machine should go
through a process of injtializing its components. Class
(method) area, Java stack, heap memory area and global
variable are initialized and the values of elements required
for performance are set.

getClass() Loader:1t analyze the class information
from the class file and stores it in the class area, while
working as a loader that loads classes stored in forms of
files. As the virtual machine adopted the dynamic loading,
any class required for operation is loaded at any time.

Execute-Interpreter: The core of the virtual machine
which is a function handling methods. It gets method in-
formation from the class area and handles bytecodes con-
tained in methods. All data generated during the inter-
preter operation is stored and managed in the Java stack
and heap memo.

Bytecode Java Stack
Fetch
! /
Class Area Bytecode
Handling || Heap

The interpreter executes the bytecodes of the class
files. The interpreter stores and maintains the class in-
formation that is saved by the loader and refer to the in-
formation when it is executed. Data generated during the
process is stored and managed in the Java stack and
heap. When an error occurs, the interpreter is supposed
to display an error message and exit. Since the methods
terminate in the opposite order to the calls, if there is no
frame information in Java stack, the interpreter regards it
as a termination status and stops the operation. (Fig. 4)
is a detailed design for interpreter implementation.

4. Experiments

To test the implemented small virtual machine,
‘Samplejava’ source was written and its results were
verified. In addition, a print related method was defined
in APIClassjava to call a native function supporting the
output and a relevant native function was implemented in
the virtual machine to check the output during execution.
A sentence to output a multiplication table in the main()
and a method to test a repetitive sentence are inserted in
Samplejava source. (Fig. 5) represents Samplejava and
APIClass.java sources, respectively.

// Sample.java
public class Sample {
public static void main(String{] args) {
for (int i=2; i<=9; i++) {
for (int j=1; j<=9; j++) {
APIClass.print(i); APIClass.prints(” * ”); APIClass.print(j);
APIClass.prints(” = "); APIClass.print(i*j); APIClass.printsn("");
}
}
hello(7);
}
public static void hello(int value) {
for (int i=2; i<value; i++) {
APIClass.prints(“print : ”); APIClass.println(i);
}
}
}
// APIClass.java
public class APIClass {
public static native void print(int value); public static native void
println(int value);
public static native void printsin(String value); public static native void
prints(String value);
}

Error Method
Handling Handling

|
Iﬂm Stack Status ? YES : N0—|
|

[Finish |

(Fig. 4) Interpreter design: execution procedure

(Fig. 5) Sample.java and APIClass.java sources

(Fig. 6) shows the results of executing the virtual ma-
chines including debugging information and results of
each stage. When each class file is loaded, such in-
formation as file image output information, initialization
process and method call information is printed.

Jranafer Serpt Window Help
EEIEP Ak

(Fig. 6) *.rclass generation

*class VS.xrclass file zise

600

500 -

400
o ; -

300 *class fllle sge
B «rclass file size

200

100

0

Testjava Calculation Simple J

(Fig. 7) Comparison of *.class and *rclass file sizes(byte)

Comparison of the Execution times(ms)

90
80
70
60
50
40
30
20 |
10

O +class
W «rclass

Times(ms)

Testjava Calculation Simple

(Fig. 8) Comparison of the execution times(ms) of *class and
*relass file

(Fig. 7) shows a comparison of the size of applica-
tions(Test.java, Calculation.,java, Simplejava).

The sizes are all smaller for the #*rclass format.
Because of the the essential elements were extracted to
reduce the size the class file during the conversion.

Fig. 8 shows a comparison of the execution times of
applications(Test.java, Calculationjava, Simple.java).

The execution times of the virtual machine for the
three benchmark programs(+.rclass) is measured over
more than range from 52% to 83% of the *.class files.
Because of the extracted essential elements are executed,
and Constants pools informations in the redesigned class
file are compacted.

5. Conclusion

Since applications are susceptible to the hardware and

HEAE X ScHA TS 2T JraH el 4 3 #8233

operating systems when they are executed, source files
should be compiled to create native codes suitable to the
machine used. Therefore, any change in hardware and
operating systems will result in the development of new
compilers, API modification and the rebuilding of the de-
velopment environment. To address this issue, the virtual
machine is used to interface between the system and the
application. The Java compiler doesn’t create any object
code for a specific machine, but creates an intermediate
code for the virtual machine and runs it in the JVM.

This paper introduces the experiences of designing and
implementing a virtual machine, which runs in small de-
vices such as mobile devices to address Java applications,
based on JVM, KVM and Waba virtual machine. To do
this, first a translator was developed to convert Java
class files automatically. Only the essential elements were
extracted to reduce the size the class file during the con-
version and the file’s internal structure was transformed
for better runtime efficiency. Second, a virtual machine
for translated class files was designed and implemented.
All components including core components such as load-
er/linker, internal information structure and interpreter
were newly designed and implemented. Finally, the devel-
oped virtual machine was verified by showing that the
virtual machine received the translated class file and out-
put the runtime results.

References

[1] Jon Meyer & Troy Downing , “Java Virtual Machine”, March,
1997.

(2] Tim Lindholm and Frank Yellin, “The Java Virtual Machine
Specification 2nd edition”, Addision-Wesley, 1999.

[3] Bill Blunden, “Virtual Machine Design and Implementation
in C/C++", Wordware Publishing, Inc., 2002.

[4] Sun Microsystems, “The K Virtual Machine(KVM) White
Paper Technical Report”, Sun Microsystems, 1999.

[5] Rainer Leupers and Peter Marwedel, “Retargetable Compiler
Technology for Embedded System: Tools and Applications”,
Kluwer Academic Publishers, 2001.

[6] John R. Levine, “Linkers and Loaders”, Morgan Kaufmann
Publishers, 2000.

[7] Nik Shaylor, Douglas N. Simon, William R. Bush, “A Java
Virtual Machine Architecture for Very Small Devices”, In
the Proceddings of ACM SIGPLAN Conferences on
Languages, Compilers, and Tools Embedded Systems
2003(LCTES '03), ACM Press, PP. 34-41, 2003.

[8] John Whaley, “Joeq: A Virtual Machine and Compiler
Infrastructure”, In the Proceddings of ACM SIGPLAN

234 FEMolEB=ZX A A12-AT M3Z=(2005.6)

Conferences on Interpreters, Virtual Machines and
Emulators 2003(IVME ’03), ACM Press, pp.58-66, 2003.
[9] Derek Rayside, Evan Mamas, Erik Hons, “Compact Java

Binaries for Embedded System”, Proceddings of the 9th
NRC/IBM centre for Advanced Studies Confercence
(CASCON °99), pp.1-14, 1999.

[10] W. Paugh, “Compressing Java class files”, In the Proceedings
of ACM/SIGPLAN Conference on Programming Language
Design and Implementation(PLDI) ‘99, pp.247-258, May,
1999.

[11] Clausen, LR., Schultz, UP., Consel, C., Muller, G., “Java
Bytecode Compression for Low-End Embedded Systems”,
ACM TOPLAS, Vol.22, No.3, pp.471-489, May, 2000.

[12) Tip, F., Sweeney, P.F,, Laffra, C., Eisma, A., Streeter, D.,
“Practical Extraction Techniques for Java”, ACM TOPLAS,
Vol.24, No.5, pp.625-666, Nov., 2002.

[13] “Jike Research Virtual Machine”,
http://www.ibm.com/developerworks/oss/jikesrvm

[14] “Waba Programming Platform”,
http://www.wabasoft.com

[15] “Joeq Virtual Machine”,
http://sourceforge.net/projects/jeoq
http://www stanford.edu/~jwhaley

L -

il : kkman@sanji.ac kr
ARt AFE S EH(F A

st HAZA}

2002\ ~2003 \d Queensland University of Technology Q724
2001 ~ @A AU AREARITTE 2P

FHEH: Z2 g% Ao A 2 +4

