• Title/Summary/Keyword: Virtual Stiffness Model

Search Result 50, Processing Time 0.018 seconds

Effects of a Human Impedance and a First-Order-Hold Method on Stability of a Haptic System with a Virtual Spring Model (인간 모델과 1차 샘플-홀드 방식이 가상 스프링 모델 시스템의 안정성에 미치는 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • When a human operator interacts with a virtual wall that is modeled as a virtual spring model, the lager the stiffness of the virtual spring is, the more realistic the operator feels that the virtual wall is. In the previous studies, it is shown that the maximum available stiffness of a virtual spring to guarantee the stability can be increased when the first-order-hold method is applied, however the effects of a human impedance on the stability are not considered. This paper presents the effects of a human impedance on stability of haptic system with a virtual spring and a first-order-hold (FOH) method. The human impedance model is modeled as a linear second-order system model. The relations between the maximum available stiffness of a virtual spring and the human impedance such as a mass, a damping and a stiffness are analyzed through the MATLAB simulation. It is shown that the maximum available stiffness is proportional to the square root of the human mass or damping respectively.

  • PDF

Characterization and Control of Grasp Stiffness Based on Virtual Stiffness Model (가상 강성 모델에 기초한 파지 강성 해석 및 파지 제어)

  • Choi, Hyouk-Ryeol;Chung, Wan-Kyun;Youm, Youngil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.128-138
    • /
    • 1996
  • Based on the virtual stiffness model, the stiffness of a grasped object is characterized. Differing from the previous investigations, the effect of grasp force on the stiffness of a grasp is formulated in terms of additional stiffness, which is called additional stiffness in this paper, and it is addressed how this term affects the stability of a grasp. In addition, a method of controlling the stiffness of a grasp is proposed and validated by experiments using a two-fingered robot hand.

  • PDF

Effects of Data-hold Methods on Stability of Haptic System (데이터 홀드 방식에 따른 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.35-39
    • /
    • 2012
  • This paper presents the effect of data-hold methods on stability of haptic system with a virtual wall. When a human operator interacts with virtual wall, the lager the stiffness of the virtual wall is, the more realistic the operator feels that the virtual wall is. However, if the stiffness of the virtual wall becomes extremely large, the system may be unstable. When a virtual wall is designed, it is necessary to analyze the maximum available stiffness to guarantee a stable haptic interaction. The simulation model in this paper is developed based on the haptic device model, sampler, a virtual wall model, and data hold methods to compute the maximum stiffness for stability. The effectiveness of the simulation is evaluated through comparing the results of previous studies with the results of this simulation. In addition, the effects of two data hold methods, that is, zero-order hold (ZOH) and first-order hold (FOH) on the stability are analyzed and the values of the maximum available stiffness are compared through the simulation.

  • PDF

Effects of the time delay on the stability of a virtual wall model with a first-order-hold method (시간지연에 의한 일차홀드 방식을 포함하는 가상벽 모델의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.17-21
    • /
    • 2014
  • This paper presents the effects of the time delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a time delay model. In this paper, the time delay is considered as the computational time delay that is assumed to be as much as the sampling time. As the time delay increases, the maximal available stiffness of a virtual wall model is reduced reversely. The relation among the time delay and the maximum available stiffness, the mass and the damper of the haptic device are analyzed using the MATLAB simulation.

Analysis for the Stability of a Haptic System with the Computational Time-varying Delay (가변적인 계산시간지연에 의한 햅틱 시스템에서의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • This paper presents the effects of the computational time-varying delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a computational time-varying delay model. In this paper, the maximum of the computational time-varying delay is assumed to be as much as the sampling time. Using the simulation, it is analyzed how the sample-hold methods and the computational time-varying delay affect the maximum available stiffness. As the maximum of computational time-varying delay increases, the maximal available stiffness of a virtual wall model is reduced.

The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass (모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구)

  • Hur, Deog-Jae;Jung, Jae-Yup;Cho, Yeon;Park, Tae-Won
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

Introduction of Efficient FE-analysis Method Using Virtual Equivalent Projected Model (VEPM) for Metallic Sandwich Plates with Pyramidal Truss Cores (가상등가투영형상을 이용하여 피라미드형 트러스 코어를 구비한 금속샌드위치 판재의 효율적 해석기법 제안)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.262-265
    • /
    • 2007
  • Metallic sandwich plates constructed of two face sheets and low relative density cores have lightweight characteristics and various static and dynamic load bearing functions. To predict the formability and performance of these structured materials, a computationally efficient FE-analysis method incorporating virtual equivalent projected model has been newly introduced for analysis of metallic sandwich plates. Two dimensional models using the projected shapes of 3D structures have the same equivalent elastic-plastic properties with original geometries including anisotropic stiffness, yield strength and linear hardening function. The projected shapes and virtual properties of the virtual equivalent projected model have been estimated analytically with the same equivalent properties and face buckling strength of 3D pyramidal truss core.

  • PDF

Drape Simulation Estimation for Non-Linear Stiffness Model (비선형 강성 모델을 위한 드레이프 시뮬레이션 결과 추정)

  • Eungjune Shim;Eunjung Ju;Myung Geol Choi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.117-125
    • /
    • 2023
  • In the development of clothing design through virtual simulation, it is essential to minimize the differences between the virtual and the real world as much as possible. The most critical task to enhance the similarity between virtual and real garments is to find simulation parameters that can closely emulate the physical properties of the actual fabric in use. The simulation parameter optimization process requires manual tuning by experts, demanding high expertise and a significant amount of time. Especially, considerable time is consumed in repeatedly running simulations to check the results of applying the tuned simulation parameters. Recently, to tackle this issue, artificial neural network learning models have been proposed that swiftly estimate the results of drape test simulations, which are predominantly used for parameter tuning. In these earlier studies, relatively simple linear stiffness models were used, and instead of estimating the entirety of the drape mesh, they estimated only a portion of the mesh and interpolated the rest. However, there is still a scarcity of research on non-linear stiffness models, which are commonly used in actual garment design. In this paper, we propose a learning model for estimating the results of drape simulations for non-linear stiffness models. Our learning model estimates the full high-resolution mesh model of drape. To validate the performance of the proposed method, experiments were conducted using three different drape test methods, demonstrating high accuracy in estimation.

A Study for the Effect of a Virtual Mass with a Low-Pass Filter on a Stability of a Haptic System (가상질량과 저주파통과필터에 의한 햅틱 시스템의 안정성 영역에 관한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.25-30
    • /
    • 2017
  • This paper presents the effects of a virtual mass with a low-pass filter on the stability boundary of a virtual spring in the haptic system. In general, a haptic system consists of a haptic device, a sampler, a virtual impedance model and zero-order-hold. The virtual impedance is modeled as a virtual spring and a virtual mass. However the high-frequency noise due to the sampling time and the quantization error of sampled data may be generated when an acceleration is measured to compute the inertia force of the virtual mass. So a low-pass filter is needed to prevent the unstable behavior due to the high-frequency noise. A finite impulse response (FIR) filter is added to the measurement process of the acceleration and the effects on the haptic stability are simulated. According to the virtual mass with the FIR filter and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. The maximum available stiffness to guarantee the stable behavior is reduced, but simulation results still show that the stability boundary of the haptic system with the virtual mass is larger than that of the haptic system without the virtual mass.

Effects of a First-order-hold Method and a Virtual Damper on the Stability Boundary of a Virtual Spring (일차홀드 방식과 가상 댐퍼가 가상 스프링의 안정성 영역에 미치는 영향)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.396-401
    • /
    • 2019
  • A virtual rigid is modeled as the parallel structure of a virtual spring and a virtual damper. The reflective force from the virtual model is designed to be as large as possible to improve the realism of the virtual environment while maintaining the stable interaction. So, it is important to analyze the stability boundary of the virtual spring and damper. In the previous researches, the stability boundary is analyzed based on the zero-order-hold (ZOH) method, but it is analyzed based on the first-order-hold (FOH) method and the virtual damper in the paper. The boundary value of the stable virtual damper is inverse proportional to the sampling time and the maximum value of stable virtual stiffness is inverse proportional to the square of the sampling time. And the maximum value in the FOH method is increased to 110% of the value in the ZOH method. If the virtual damper is smaller than about 50% of the boundary value of the virtual damper in the FOH method, the stable virtual stiffness in the FOH method is several times larger than that in the ZOH method.