• Title/Summary/Keyword: Virtual Simulation Test

Search Result 268, Processing Time 0.027 seconds

Men's Work Clothes Jumper Pattern-making and Its Appearance Evaluation through 3-D Clothing Simulation (3차원 가상착의 시뮬레이션을 이용한 20~50대 연령별 남성 작업복 점퍼 패턴 설계 및 외관평가)

  • Park, Gin-Ah;Lee, Woo-Kyoung
    • Journal of Fashion Business
    • /
    • v.16 no.1
    • /
    • pp.103-120
    • /
    • 2012
  • The study aimed to evaluate the appearance of the men's work clothes jumpers developed to suggest the prototype work clothes jumper patterns by using the 3-D clothing simulation technology. The 3-D simulated clothing images considered the upper body features of men in the age range between 20 and 59 in South Korea. A questionnaire survey conducted previously suggested a basic jumper style with shirt collar and snap opening cuffs for the heavy industry workers; and discomforting parts of the work clothes jumper of the subject workers have been referred to for the experimental jumper appearance test. Besides, defining the measurements of men's upper bodies enabled to generate the men's 3-D virtual models representing each age group's average body feature. The significant body measurement factors for men's 3-D body modeling and jumper pattern-making were stature for the height factor; chest, waist and hip circumferences for the circumference factor; waist back, hip and arm lengths and interscye front/back for the length factor; and back neck breadth for the breadth factor and armscye and scye depths for the depth factor. The men's body measurements of 30's were implemented to three experimental jumper pattern-making methods, i.e. the 1st method using the relations based on stature and chest circumference; the 2nd method using the direct body measurements; and the 3rd method adopting the maximum ease amount of given body measurements whether relations or direct measurements except the direct measurement of scye depth. A comparison among the three experimental jumpers' simulated images highlighted that the appropriate ease amount of the jumper gained higher scores in terms of the jumpers' front, side, back and sleeve parts and the total silhouettes. Therefore the 3rd experimental jumper was finally selected for the heavy industry workers.

Pharmacophore Modeling and Molecular Dynamics Simulation to Find the Potent Leads for Aurora Kinase B

  • Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Kim, Yong-Seong;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.869-880
    • /
    • 2012
  • Identification of the selective chemical features for Aurora-B inhibitors gained much attraction in drug discovery for the treatment of cancer. Hence to identify the Aurora-B critical features various techniques were utilized such as pharmacophore generation, virtual screening, homology modeling, molecular dynamics, and docking. Top ten hypotheses were generated for Aurora-B and Aurora-A. Among ten hypotheses, HypoB1 and HypoA1 were selected as a best hypothesis for Aurora-B and Aurora-A based on cluster analysis and ranking score, respectively. Test set result revealed that ring aromatic (RA) group in HypoB1 plays an essential role in differentiates Aurora-B from Aurora-A inhibitors. Hence, HypoB1 used as 3D query in virtual screening of databases and the hits were sorted out by applying drug-like properties and molecular docking. The molecular docking result revealed that 15 hits have shown strong hydrogen bond interactions with Ala157, Glu155, and Lys106. Hence, we proposed that HypoB1 might be a reasonable hypothesis to retrieve the structurally diverse and selective leads from various databases to inhibit Aurora-B.

Lane Detection for Adaptive Control of Autonomous Vehicle (지능형 자동차의 적응형 제어를 위한 차선인식)

  • Kim, Hyeon-Koo;Ju, Yeonghwan;Lee, Jonghun;Park, Yongwan;Jeong, Ho-Yeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.4
    • /
    • pp.180-189
    • /
    • 2009
  • Currently, most automobile companies are interested in research on intelligent autonomous vehicle. They are mainly focused on driver's intelligent assistant and driver replacement. In order to develop an autonomous vehicle, lateral and longitudinal control is necessary. This paper presents a lateral and longitudinal control system for autonomous vehicle that has only mono-vision camera. For lane detection, we present a new lane detection algorithm using clothoid parabolic road model. The proposed algorithm in compared with three other methods such as virtual line method, gradient method and hough transform method, in terms of lane detection ratio. For adaptive control, we apply a vanishing point estimation to fuzzy control. In order to improve handling and stability of the vehicle, the modeling errors between steering angle and predicted vanishing point are controlled to be minimized. So, we established a fuzzy rule of membership functions of inputs (vanishing point and differential vanishing point) and output (steering angle). For simulation, we developed 1/8 size robot (equipped with mono-vision system) of the actual vehicle and tested it in the athletics track of 400 meter. Through the test, we prove that our proposed method outperforms 98 % in terms of detection rate in normal condition. Compared with virtual line method, gradient method and hough transform method, our method also has good performance in the case of clear, fog and rain weather.

  • PDF

Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part II: Verification of Driving Cycle (전기자동차 성능평가를 위한 도심 주행 모드 개발 Part II: 주행 모드 검증)

  • Jeong, Nak-Tak;Yang, Seong-Mo;Kim, Kwang-Seup;Choi, Su-Bin;Wang, Maosen;You, Sehoon;Kim, Hyunsoo;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Recently, due to various environmental problems such as global warming, increases of international oil prices, exhaustion of resource, a paradigm of world automobile market is rapidly changing from conventional vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV, HEV, PHEV and FCEV. Generally, in order to measure fuel consumption and pollutant emissions of cars, chassis dynamometer tests are performed on various driving cycles before actual driving test. There are many driving cycles for performance evaluation of conventional vehicles. However, there is a lack of researches on driving cycle for EV. In this study, the urban driving cycle for performance evaluation of electric vehicles was developed. This study is composed of two parts. In the part 1, the urban driving cycle 'GUDC-EV(Gwacheon-city Urban Driving Cycle for Electric Vehicles)' was developed by using driving data, which were obtained through actual driving experiment, and statistic analysis with chronological table. In this paper part 2, in order to verify the developed driving cycle GUDC-EV, virtual EV platforms were configured and simulations were performed with actual driving data using In addition, simulation results were compared with existing driving cycles such as FTP-72, NEDC and Japan 10-15.

VIRTUAL PREDICTION OF A RADIAL-PLY TIRE'S IN-PLANE FREE VIBRATION MODES TRANSMISSIBILITY

  • CHANG Y. P.;EL-GINDY M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • A full nonlinear finite element P185/70Rl4 passenger car radial-ply tire model was developed and run on a 1.7-meter-diameter spinning test drum/cleat model at a constant speed of 50 km/h in order to investigate the tire transient response characteristics, i.e. the tire in-plane free vibration modes transmissibility. The virtual tire/drum finite element model was constructed and tested using the nonlinear finite element analysis software, PAM-SHOCK, a nonlinear finite element analysis code. The tire model was constructed in extreme detail with three-dimensional solid, layered membrane, and beam finite elements, incorporating over 18,000 nodes and 24 different types of materials. The reaction forces of the tire axle in vertical (Z axis) and longitudinal (X axis) directions were recorded when the tire rolled over a cleat on the drum, and then the FFT algorithm was applied to examine the transient response information in the frequency domain. The result showed that this PI 85/70Rl4 tire has clear peaks of 84 and 45 Hz transmissibility in the vertical and longitudinal directions. This result was validated against more than 10 previous studies by either theoretical or experimental approaches and showed excellent agreement. The tire's post-impact response was also investigated to verify the numerical convergence and computational stability of this FEA tire model and simulation strategy, the extraordinarily stable scenario was confirmed. The tire in-plane free vibration modes transmissibility was successfully detected. This approach was never before attempted in investigations of tire in-plane free vibration modes transmission phenomena; this work is believed to be the first of its kind.

Design and Implementation of IoT Platform-based Digital Twin Prototype (IoT 플랫폼 기반 디지털 트윈 프로토타입 설계 및 구현)

  • Kim, Jeehyeong;Choi, Wongi;Song, Minhwan;Lee, Sangshin
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.356-367
    • /
    • 2021
  • With the recent development of IoT and artificial intelligence technology, research and applications for optimization of real-world problems by collecting and analyzing data in real-time have increased in various fields such as manufacturing and smart city. Representatively, the digital twin platform that supports real-time synchronization in both directions with the virtual world digitized from the real world has been drawing attention. In this paper, we define a digital twin concept and propose a digital twin platform prototype that links real objects and predicted results from the virtual world in real-time by utilizing the oneM2M-based IoT platform. In addition, we implement an application that can predict accidents from object collisions in advance with the prototype. By performing predefined test cases, we present that the proposed digital twin platform could predict the crane's motion in advance, detect the collision risk, perform optimal controls, and that it can be applied in the real environment.

Planning of Optimal Work Path for Minimizing Exposure Dose During Radiation Work in Radwaste Storage (방사성 폐기물 저장시설에서의 방사선 작업 중 피폭선량 최소화를 위한 최적 작업경로 계획)

  • Park, Won-Man;Kim, Kyung-Soo;Whang, Joo-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • Since the safety of nuclear power plant has been becoming a big social issue the exposure dose of radiation for workers has been one of the important factors concerning the safety problem. The existing calculation methods of radiation dose used in the planning of radiation work assume that dose rate does not depend on the location within a work space thus the variation of exposure dose by different work path is not considered. In this study, a modified numerical method was presented to estimate the exposure dose during radiation work in radwaste storage considering the effects of the distance between a worker and sources. And a new numerical algorithm was suggested to search the optimal work path minimizing the exposure dose in pre-defined work space with given radiation sources. Finally, a virtual work simulation program was developed to visualize the exposure dose of radiation doting radiation works in radwaste storage and provide the capability of simulation for work planning. As a numerical example, a test radiation work was simulated under given space and two radiation sources, and the suggested optimal work path was compared with three predefined work paths. The optimal work path obtained in the study could reduce the exposure dose for the given test work. Based on the results, tile developed numerical method and simulation program could be useful tools in the planning of radiation work.

S/W Development of Flying Qualities Evaluation in Virtual Flight Test using MATLAB GUI (GUI 기반 가상모의시험 비행성 평가 S/W 개발)

  • Cho, Seung-Gyu;Rhee, Ihn-Seok;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • In an evaluation process of aircraft flying qualities, a clear and concise application interface is important since an evaluation process requires numerous repeated evaluation. This flight evaluation program have implemented efficient flight evaluation user interface along with changed trim condition interface and composed of comprehensive evaluation interface have mounted all automated FQ evaluation modules that was selected to be compose of 14 items in respect of an unmanned fixed-wing aircraft. Accordingly when it is necessary to design the flight control system as well as to develop a FQ considered aircraft, this S/W can be utilized as a tool that is a useful test evaluation S/W with scalability and enable to reduce the time and the cost of verification and evaluation process.

Study on torso patterns for elderly obese women for vitalization of the silver clothing industry - Applying the CLO 3D program - (실버 의류산업 활성화를 위한 노년 비만여성의 토르소 원형 연구 - CLO 3D 가상착의 시스템 활용 -)

  • Seong, Ok jin;Ha, Hee Jung
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.4
    • /
    • pp.476-487
    • /
    • 2017
  • The purpose of this study was to suggest torso patterns that fit the three main body shapes of elderly obese women. To reduce time, costs, and also the trial and error needed to make patterns, the CLO program for 3D test wear was employed. Three virtual models for aged obese women were use, with the YUKA system used to produce torso patterns. 3D simulation of test wear and corrections was done to design optimal torso patterns. The results were as follows: First, for the three models of obese women's body shapes as realized by CLO 3D, Type 1 is lower-body obesity shapes, Type 2 is abdominal obesity shapes, and Type 3 is whole-body obesity shapes. Second, to design the study patterns, actual measurement values, back waist length and waist to hip length, were used. The armhole depth (B/4-1.5), front interscye (B/6+2.3), front neck width (B/12-0.5), front neck depth (B/12+0.5), front waist measurement (W/4+ 1.5+D), front hip measurement (H/4+2+0.5), and back hip measurement (H/4+3-0.5) were calculated using formulas. Third, according to the results of test-wearing the study patterns, reduced front neck width and depth improved the neck fit and reduced armhole depth bettered loose or plunging armhole girth and also reduced the sagging of bust c.. Also, tight sidesfrom aprotruded waist and abdomen improved with the increase of surpluses in the back waist and also back and front hip c. The exterior was enhanced by displacement of back and front darts, which distributed surpluses better.

Development of Circuit Emulator Solution using Raspberry Pi System (라즈베리파이 시스템을 이용한 회로 에뮬레이터 솔루션 개발)

  • Nah, Bang-hyun;Lee, Young-woon;Kim, Byung-gyu
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.607-612
    • /
    • 2017
  • The use of RaspberryPi in building an embedded system may be difficult for users in understanding the circuit and the hardware cost. This paper proposes a solution that can test the systems virtually. The solution consists of three elements; (i) editor, (ii) interpreter and (iii) simulator and provides nine full modules and also allows the users to configure/run/test their own circuits like real environment. The task of abstraction for modules through the actual circuit test was carried out on the basis of the data sheet and the specification provided by the manufacturer. If we can improve the level of quality of our solution, it can be useful in terms of cost reduction and easy learning. To achieve this end, the electrical physics engine, the level of interpreter that can be ported to the actual board, and a generalization of the simulation logic are required.