• Title/Summary/Keyword: Virtual Obstacle

Search Result 93, Processing Time 0.035 seconds

Real-Time Obstacle Avoidance of Autonomous Mobile Robot and Implementation of User Interface for Android Platform (자율주행 이동로봇의 실시간 장애물 회피 및 안드로이드 인터페이스 구현)

  • Kim, Jun-Young;Lee, Won-Chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.237-243
    • /
    • 2014
  • In this paper we present an real-time obstacle avoidance technique of autonomous mobile robot with steering system and implementation of user interface for mobile devices with Android platform. The direction of autonomous robot is determined by virtual force field concept, which is based on the distance information acquired from 5 ultrasonic sensors. It is converted to virtual repulsive force around the autonomous robot which is inversely proportional to the distance. The steering system with PD(proportional and derivative) controller moves the mobile robot to the determined target direction. We also use PSD(position sensitive detector) sensors to supplement ultrasonic sensors around dead angle area. The mobile robot communicates with Android mobile device and PC via Ethernet. The video information from CMOS camera mounted on the mobile robot is transmitted to Android mobile device and PC. And the user can control the mobile robot manually by transmitting commands on the user interface to it via Ethernet.

Experimental Verification of 1D Virtual Force Field Algorithm on Uneven and Dusty Environment (비평지 및 먼지 환경에서 1차원 가상힘장 알고리즘의 실험적 검증)

  • Choe, Tok Son;Joo, Sang-Hyun;Park, Yong-Woon;Park, Jin-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.647-653
    • /
    • 2017
  • In this paper, we deal with the experimental verification of 1D virtual force field algorithm based reflexive local path planning on uneven and dusty environment. The existing obstacle detection method on uneven and dusty environment and 1D virtual force field based reflexive local path planning algorithm simply are introduced. Although the 1D virtual force field algorithm is verified by various simulations, additional efforts are needed to verify this algorithm in the real-world. The introduced methods are combined with each other, installed to real mobile platforms and verified by various real experiments.

Research of 3D image processing of VR technology in medicine based on DNN

  • ZhaoZhe, Gong;XiaoDong, Li;XiaoYing, Shi;Geng, Liu;Bin, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1584-1596
    • /
    • 2022
  • According to a survey published in an authoritative journal in January 2020, the globalincidence rate of mental illness is 8.3% for men and 10.6% for women, which indicates thatmental illness has become a globally recognized obstacle. Therefore, specific psychotherapy including mental illness will become an important research topic. It is very effective forpatients with special mental diseases, such as mental illness, to reduce their mental reaction byexposure therapy; the system uses the virtual reality system of medical images processed by learningalgorithm to reproduce the effect of virtual reality exposure method of the high scene of transparent ladder. Compared with the old invasive exposure scene, the results show that theimprovement of both conditions has obvious effect, and the effect of human treatment underthe two conditions is not good. There are obvious differences, which show that virtual reality model will gradually replace the on-the-spot feeling. Finally, with more and more researchers have put forward a variety of other virtual reality image processing models, the research of image processing has gradually become more and more interested.

Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments (키넥트 센서를 이용한 동적 환경에서의 효율적인 이동로봇 반응경로계획 기법)

  • Tuvshinjargal, Doopalam;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.549-559
    • /
    • 2015
  • In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

Escaping Route Method in a Trap Situation for Local Path Planning (로컬 경로 계획을 위한 포텐셜 함수 기반의 가상 탈출 루트 연구)

  • Kim, Dong-Hun;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1989-1990
    • /
    • 2006
  • This paper presents an escaping route method in a trap situation (a case that the robot is trapped in a local minimum by the potential of obstacles). In this scheme, the APFs for path planning have a multiplicative and auditive configuration between APFs for goal destination and APFs for obstacle avoidance unlike conventional configuration where APFs for obstacle avoidance is added to APFs for goal destination. The virtual escaping route method is proposed to allow a robot to escape from a local minimum in trap situation where the total forces composed of repulsive forces by obstacles and attractive force by a goal are zero.

  • PDF

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

Development of Potential Function Based Path Planning Algorithm for Mobile Robot

  • Lee, Sang-Il;Kim, Myun-Hee;Oh, Kwang-Seuk;Lee, Sang-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2325-2330
    • /
    • 2005
  • A potential field method for solving the problem of path planning based on global and local information for a mobile robot moving among a set of stationary obstacles is described. The concept of various method used path planning is used design a planning strategy. A real human living area is constructed by many moving and imminence obstacles. Home service mobile robot must avoid many obstacles instantly. A path that safe and attraction towards the goal is chosen. The potential function depends on distance from the goal and heuristic function relies on surrounding environments. Three additional combined methods are proposed to apply to human living area, calibration robots position by measured surrounding environment and adapted home service robots. In this work, we proposed the application of various path planning theory to real area, human living. First, we consider potential field method. Potential field method is attractive method, but that method has great problem called local minimum. So we proposed intermediate point in real area. Intermediate point was set in doorframe and between walls there is connect other room or other area. Intermediate point is very efficiency in computing path. That point is able to smaller area, area divided by intermediate point line. The important idea is intermediate point is permanent point until destruction house or apartment house. Second step is move robot with sensing on front of mobile robot. With sensing, mobile robot recognize obstacle and judge moving obstacle. If mobile robot is reach the intermediate point, robot sensing the surround of point. Mobile robot has data about intermediate point, so mobile robot is able to calibration robots position and direction. Third, we gave uncertainty to robot and obstacles. Because, mobile robot was motion and sensing ability is not enough to control. Robot and obstacle have uncertainty. So, mobile robot planed safe path planning to collision free. Finally, escape local minimum, that has possibility occur robot do not work. Local minimum problem solved by virtual obstacle method. Next is some supposition in real living area.

  • PDF

Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm (무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구)

  • Weon, Ihn-Sik;Lee, Soon-Geul;Ryu, Jae-Kwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.945-953
    • /
    • 2018
  • In this paper, we use 3-D LIDAR for obstacle detection and avoidance maneuver for autonomous unmanned operation. It is aimed to avoid obstacle avoidance in unmanned water under marine condition using only single sensor. 3D lidar uses Quanergy's M8 sensor to collect surrounding obstacle data and includes layer information and intensity information in obstacle information. The collected data is converted into a three-dimensional Cartesian coordinate system, which is then mapped to a two-dimensional coordinate system. The data including the obstacle information converted into the two-dimensional coordinate system includes noise data on the water surface. So, basically, the noise data generated regularly is defined by defining a hypothetical region of interest based on the assumption of unmanned water. The noise data generated thereafter are set to a threshold value in the histogram data calculated by the Vector Field Histogram, And the noise data is removed in proportion to the amount of noise. Using the removed data, the relative object was searched according to the unmanned averaging motion, and the density map of the data was made while keeping one cell on the virtual grid map. A polar histogram was generated for the generated obstacle map, and the avoidance direction was selected using the boundary value.

Collision Avoiding Navigation of Marine Vehicles Using Fuzzy Logic

  • Joh, Joong-seon;Kwon, Kyung-Yup;Lee, Sang--Min
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.100-108
    • /
    • 2002
  • A fuzzy logic for collision avoiding navigation of marine vehicles is proposed in this paper. VFF(Virtual Force Field) method, which is used widely in the field of mobile robots, is modifiel to apply to marine vehicles. The method is named MVFF (Modified Virtual Force Field) mothod. The MVFF consists of the determination of the heading angles far track-keeping mode ($\psi_{ca}$)and collision avoidance mode ($\psi_{ca}$). The operator can choose the pattern of the track-keeping mode in the proposed algorithm. The collision avoidance algorithm can handle static and/or moving obstacles. These functons are implemented using fuzzy logic. Various simulation results verify the proposed alogorithm.

Internet-based Teleoperation of a Mobile Robot with Force-reflection

  • Lim, Jae-Nam;Moon, Hae-Gon;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.50.6-50
    • /
    • 2002
  • In this paper, the relationship between a slave robot and the uncertain remote environment is modeled as the impedance to generate the virtual force to feed back to the operator. For the control of a teleoperated mobile robot equipped with camera, the teleoperated mobile robot take pictures of remote environment and sends the visual information back to the operator over the Internet. Because of the limitation of communication bandwidth and narrow view-angles of camera, it is not possible to watch the environment clearly, especially shadow and curved areas. To overcome this problem, the virtual force is generated according to both the distance between the obstacle and robot and the approachin...

  • PDF