• Title/Summary/Keyword: Virtual Navigation

Search Result 377, Processing Time 0.037 seconds

Navigation Characteristics of a Virtual Human using a Limited Perception-based Mapping (제한적 인지 기반의 맵핑을 이용한 가상인간의 항해 특성)

  • Han, Chang-Hee;Kim, Lae-Hyun;Kim, Tae-Woo
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.93-103
    • /
    • 2005
  • This paper presents characteristics of a virtual human's navigation using a limited perception-based mapping. Previous approaches to virtual human navigation have used an omniscient perception requiring full layout of a virtual environment in advance. However, these approaches have a limitation on being a fundamental solution for a human-likeness of a virtual human, because behaviors of humans are basically based on their limited perception instead of omniscient perception. In this paper, we integrated Hill's mapping algorithm with a virtual human to experiment virtual human's navigation with the limited perception. This approach does not require full layout of the virtual environment, 360-degree's field of view, and vision through walls. In addition to static objects such as buildings, we consider enemy emergence that can affect an virtual human's navigation. The enemy emergence is used as the variable on the experiment of this present research. As the number of enemies varies, the changes in arrival rate and time taken to reach the goal position were observed. The virtual human navigates by two conditions. One is to take the shortest path to the goal position, and the other is to avoid enemies when the virtual human encounters them. The acquired result indicates that the virtual human's navigation corresponds to a human cognitive process, and thus this research can be a framework for human-likeness of virtual humans.

  • PDF

A New Mavigation Method in Virtual Environment

  • Koo, Eun-Young;Kon, Tae-Wook;Choy, Yoon-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.643-645
    • /
    • 2000
  • This paper puts emphasis on navigation in virtual environment, which is one of the major interfaces for the interactivity between human and virtual environment in virtual reality circumstances and worlds. It proposes a new navigation method: 2d Map-Based navigation, which prevents user's spatial lost in 3D Virtual Environment. The 2D Map-Based Navigation is composed of three major processes, Constant Velocity Navigation, Collision Detection and Avoidance, and Path Adjustment. The 2D Map-Based Navigation can reduce user's difficulties and improve user's sense of presence and reality in the virtual environments. The experiment study proved that the 2D Map-Based Navigation is a very natural, straightforward and useful navigation interface in the virtual environment.

  • PDF

A New Navigation/Traveling Method in Virtual Environment (가상공간에서 새로운 이동기법에 관한 연구)

  • 권태욱;최윤철
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.224-233
    • /
    • 2000
  • An important feature of virtual reality is the facility for the user to move around a virtual environment in a natural and easily controlled manner, Navigation. Navigation involves changing the perspective of the user in the virtual environment (VE). Natural locomotion methods are able to contribute to a sense of presence and reality. This paper focuses on the navigation method in the virtual environment, one of the major interfaces for the interactivity between human and virtual environments in virtual reality circumstances and worlds. It proposes a new navigation method: Intelligent Cruise-Control Navigation (ICCN), which provides a natural and user-centered navigation method in virtual environment and can improve the reality and the presence. Intelligent Cruise-Control Navigation is composed of three major phases: Constant Velocity Navigation, Collision Detection and Avoidance, and Path Adjustment. The ICCN can reduce the user's fatigue and improve the user's presence and reality in the virtual environment. Through the experimental study it has been determined that the ICCN will be a natural, straightforward, and useful interface in VE.

  • PDF

The Effects of Joystick-controlling and Walking-around on Navigating a Virtual Space

  • RYU, Jeeheon;PARK, Sanghoon;YANG, Eunbyul;JEONG, Museok
    • Educational Technology International
    • /
    • v.21 no.2
    • /
    • pp.125-153
    • /
    • 2020
  • The advancement of virtual reality technology offers various locomotion options that support users' navigation behaviors in a virtual reality environment. This study was aimed at examining the effects of two navigation methods-joystick-controlling and walking-around-on users' perceived usability, behavioral engagement, and virtual presence. Fifty South Korean college students were recruited in the study, and they were assigned randomly to one of the two navigation conditions. Participants from each group were asked to observe a 3D object and complete the surveys. They were then asked to repeat the procedure with a 2D image. Using repeated-measures ANOVAs and MANOVA, we found that users using joystick-controlling reported higher usability and showed superior performance to the walking-around group on two tasks. Participants reported a higher behavioral engagement when observing the 2D image. Besides, they perceived a significantly higher virtual presence when observing the 2D image. Finally, we discussed the implications of the findings for the navigation method design.

The Method of Virtual Reality-based Surgical Navigation to Reproduce the Surgical Plan in Spinal Fusion Surgery (척추 융합술에서 수술 계획을 재현하기 위한 가상현실 기반 수술 내비게이션 방법)

  • Song, Chanho;Son, Jaebum;Jung, Euisung;Lee, Hoyul;Park, Young-Sang;Jeong, Yoosoo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2022
  • In this paper, we proposed the method of virtual reality-based surgical navigation to reproduce the pre-planned position and angle of the pedicle screw in spinal fusion surgery. The goal of the proposed method is to quantitatively save the surgical plan by applying a virtual guide coordinate system and reproduce it in the surgical process through virtual reality. In the surgical planning step, the insertion position and angle of the pedicle screw are planned and stored based on the virtual guide coordinate system. To implement the virtual reality-based surgical navigation, a vision tracking system is applied to set the patient coordinate system and paired point-based patient-to-image registration is performed. In the surgical navigation step, the surgical plan is reproduced by quantitatively visualizing the pre-planned insertion position and angle of the pedicle screw using a virtual guide coordinate system. We conducted phantom experiment to verify the error between the surgical plan and the surgical navigation, the experimental result showed that target registration error was average 1.47 ± 0.64 mm when using the proposed method. We believe that our method can be used to accurately reproduce a pre-established surgical plan in spinal fusion surgery.

Development of a Velocity Ellipse Navigation Algorithm in Virtual Environments Using Force Feedback (힘 반향을 이용한 속도타원 가상환경 네비게이션 알고리즘 개발)

  • Yoon I.B.;Chai Y.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.277-285
    • /
    • 2004
  • In this paper, a 2 DOF haptic yawing joystick for use as the navigation input device in virtual environments is introduced. The haptic yawing joystick has 360° range for yawing motion and ±100° for pitching motion. The device can support weights of up to 26N for χ axis and 10N for axis with 10kHz of sampling rate. The size of the haptic yawing joystick is so small that it can be assembled on armrest of an arm chair and has relatively larger work space than other conventional 2 DOF joysticks. For the haptic yawing joystick, an ellipse navigation algorithm using the user's velocity in the virtual navigation is proposed. The ellipse represents the velocity of the user. According to the velocity of the navigator, the ellipse size is supposed to be changed. Since the path width of navigation environments is limited, the ellipse size is also limited. The ellipse navigation algorithm is tested in 2 dimensional virtual environments. The test results show that the average velocity of the navigation with the algorithm is faster than the average navigation velocity without the algorithm.

A Navigation Algorithm using Locomotion Interface with Two 6-DOF Robotic Manipulators (ICCAS 2005)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2211-2216
    • /
    • 2005
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF parallel robotic manipulators. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation, using robotic manipulators. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. The walking velocity of the user is directly translated to VR actions for navigation. Finally, the functions of the RPC interface are utilized for each interaction mode. The suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

  • PDF

Video Segmentation and Video Segment Structure for Virtual Navigation

  • Choi, Ji-Hoon;Kim, Seong-Baek;Lee, Seung-Yong;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.783-785
    • /
    • 2003
  • In recent years, the use of video in GIS is considered to be an important subject and many related studies result in VideoGIS. The virtual navigation is an important function that can be applied to various VideoGIS applications. For virtual navigation by video, the following problems must be solved. 1) Because the video route may be not exactly coincided with route that user wants to navigate, parts of several video clips may be required for single navigation. Virtual navigation should allow the user to move from one video to another at the proper position. We suggest the video segmentation method based on geographic data combined with video. 2) From a point to a destination, the change frequency of video must be minimized. The frequent change of video make user to mislead navigation route and cause the wasteful use of computing resource. We suggest methods that structure video segments and calculate weight value of each node and link.

  • PDF

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

A Navigation Algorithm using a Locomotion Interface with Programmable Foot Platforms for Realistic Virtual Walking (실감의 가상 걸음을 위한 발판타입 이동인터페이스의 네비게이션 알고리즘)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.6
    • /
    • pp.358-366
    • /
    • 2006
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF programmable foot platforms. When a human walks on the locomotion interface (LI), the walking motions of the human are recognized by several sensors. Then, the sensed information is used by the LI for generation of infinite surfaces for continuous walking and the virtual environments for scene update according to motions of the human walking. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation. A novel navigation algorithm is suggested to allow natural navigation in virtual environments by utilizing conditions of normal gait analysis. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. From experiments, the subjects were satisfied with the reality of the suggested navigation algorithm using the locomotion interface. Therefore, the suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.