DOI QR코드

DOI QR Code

The Effects of Joystick-controlling and Walking-around on Navigating a Virtual Space

  • Received : 2020.09.01
  • Accepted : 2020.10.01
  • Published : 2020.10.31

Abstract

The advancement of virtual reality technology offers various locomotion options that support users' navigation behaviors in a virtual reality environment. This study was aimed at examining the effects of two navigation methods-joystick-controlling and walking-around-on users' perceived usability, behavioral engagement, and virtual presence. Fifty South Korean college students were recruited in the study, and they were assigned randomly to one of the two navigation conditions. Participants from each group were asked to observe a 3D object and complete the surveys. They were then asked to repeat the procedure with a 2D image. Using repeated-measures ANOVAs and MANOVA, we found that users using joystick-controlling reported higher usability and showed superior performance to the walking-around group on two tasks. Participants reported a higher behavioral engagement when observing the 2D image. Besides, they perceived a significantly higher virtual presence when observing the 2D image. Finally, we discussed the implications of the findings for the navigation method design.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2018S1A5B8070203

References

  1. Aarseth, E. (2001). Virtual worlds, real knowledge: towards a hermeneutics of virtuality, European Review, 9(2), 227-232. https://doi.org/10.1017/s1062798701000205
  2. Ben-Eliyahu, A., Moore, D., Dorph, R., & Schunn, C. D. (2018). Investigating the multidimensionality of engagement: Affective, behavioral, and cognitive engagement across science activities and contexts, Contemporary Educational Psychology, 53, 87-105. https://doi.org/10.1016/j.cedpsych.2018.01.002
  3. Bessa, M., Melo, M., Augusto de Sousa, A., & Vasconcelos-Raposo, J. (2018). The effects of body position on Reflexive Motor Acts and the sense of presence in virtual environments, Computers & Graphics, 71, 35-41. https://doi.org/10.1016/j.cag.2017.11.003
  4. Boletsis, C. (2017). The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology, Multimodal Technologies and Interaction, 1(4), 24. https://doi.org/10.3390/mti1040024
  5. Boletsis, C., & Cedergren, J. E. (2019). VR Locomotion in the new era of virtual reality: An empirical comparison of prevalent techniques. Advances in Human-Computer Interaction, 2019. Retrieved from https://www.hindawi.com/journals/ahci/2019/7420781/
  6. Borrego, A., Latorre, J., Llorens, R., Alcaniz, M., & Noe, E. (2016). Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. Journal of neuroengineering and rehabilitation, 13(1), 68. https://doi.org/10.1186/s12984-016-0174-1
  7. Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2016). Locomotion in virtual reality for individuals with autism spectrum disorder. Proceedings of the 2016 Symposium on Spatial User Interaction (pp.33-42). Tokyo, Japan: ACM.
  8. Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2019). Locomotion in virtual reality for room scale tracked areas. International Journal of Human-Computer Studies, 122, 38-49. doi:https://doi.org/10.1016/j.ijhcs.2018.08.002
  9. Brade, J., Lorenz, M., Busch, M., Hammer, N., Tscheligi, M., & Klimant, P. (2017). Being there again - Presence in real and virtual environments and its relation to usability and user experience using a mobile navigation task. International Journal of Human-Computer Studies, 101, 76-87. https://doi.org/10.1016/j.ijhcs.2017.01.004
  10. Cardoso, J. C. S., & Perrotta, A. (2019). A survey of real locomotion techniques for immersive virtual reality applications on head-mounted displays. Computers & Graphics, 85, 55-73. doi:https://doi.org/10.1016/j.cag.2019.09.005
  11. Chen, W., Plancoulaine, A., Ferey, N., Touraine, D., Nelson, J., & Bourdot, P. (2013). 6DoF navigation in virtual worlds: comparison of joystick-based and head-controlled paradigms. Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology (pp. 111-114). Singapore, Singapore: ACM.
  12. Darken, R. P., & Peterson, B. (2001). Spatial orientation, way finding, and representation. In K. Stanney (Ed.), Handbook of Virtual Environment Technology (pp.1-21). Florida, USA: CRC Press.
  13. Dyck, E. (2017). The OctaVis: a VR-device for rehabilitation and diagnostics of visuospatial impairments. Unpublished PhD thesis, Universitat Bielefeld, Bielefeld, Germany.
  14. Eccles, J., & Wang, M. T. (2012). Part I commentary: so what is student engagement anyway? In S. L. Christenson, & A. L. Reschly (Eds.), Handbook of research on student engagement (pp. 133-145). New York: Springer.
  15. Galvan, D. H., Boulic, R., Salomon, R., Blanke, O., & Herbelin, B. (2018). Self-attribution of distorted reaching movements in immersive virtual reality. Computers & Graphics, 76, 142-152. https://doi.org/10.1016/j.cag.2018.09.001
  16. Hu-Au, E., & Lee, J. J. (2017). Virtual reality in education: a tool for learning in the experience age. International Journal of Innovation in Education, 4(4), 215-226. https://doi.org/10.1504/IJIIE.2017.091481
  17. Interrante, V., Ries, B., & Anderson, L. (2006, March). Distance perception in immersive virtual environments, revisited. Proceedings of the IEEE Virtual Reality Conference (VR 2006) (pp. 3-10). Alexandria, VA, USA: IEEE.
  18. Kim, J. (2010). The operationalization of evaluation elements for user interface design of Interactive TVs. Archives of Design Research, 23(3), 115-126.
  19. Kitson, A., Abraham M. H., Ekaterina, R. S., Ernst K., & Bernhard, E. R. (2017a). Comparing leaning-based motion cueing interfaces for virtual reality locomotion. Proceedings of the IEEE Symposium on 3D User Interfaces (pp. 73-82). Los Angeles, USA: IEEE.
  20. Kitson, A., Hashemian, A. M., Stepanova, E. R., Kruijff, E., & Riecke, B. E. (2017b). Lean into it: exploring leaning-based motion cueing interfaces for virtual reality movement. Proceedings of the 2017 IEEE Virtual Reality (VR) (pp. 215-216). Los Angeles, USA: IEEE.
  21. Kruijff, E., Marquardt, A., Trepkowski, C., Lindeman, R. W., Hinkenjann, A., Maiero, J., & Riecke, B. E. (2016). On your feet!: Enhancing vection in leaning-based interfaces through multisensory stimuli. Proceedings of the 2016 Symposium on Spatial User Interaction (pp. 149-158). Tokyo, Japan: ACM.
  22. Langbehn, E., Lubos, P., Bruder, G., & Steinicke, F. (2017). Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE transactions on visualization and computer graphics, 23(4), 1389-1398. https://doi.org/10.1109/TVCG.2017.2657220
  23. Langbehn, E., Lubos, P., & Steinicke, F. (2018). Evaluation of locomotion techniques for room-scale VR: Joystick, teleportation, and redirected walking. In Laval Virtual: Proceedings of the Virtual Reality International Conference-Laval Virtual (pp. 4.). London, England: ACM.
  24. Lee, S., & Kim, G. J. (2008). Effects of visual cues and sustained attention on spatial presence in virtual environments based on spatial and object distinction. Interacting with Computers, 20(5), 491-502. https://doi.org/10.1016/j.intcom.2008.07.003
  25. Lim, S. (1996). Virtual reality as a new learning environment. Journal of Educational Technology, 12(2), 189-209. https://doi.org/10.17232/KSET.12.2.189
  26. Ling, Y., Nefs, H. T., Brinkman, W. P., Qu, C., & Heynderickx, I. (2013). The relationship between individual characteristics and experienced presence. Computers in Human Behavior, 29(4), 1519-1530. https://doi.org/10.1016/j.chb.2012.12.010
  27. Monteiro, P., Carvalho, D., Melo, M., Branco, F., & Bessa, M. (2018). Application of the steering law top virtual reality walking navigation interfaces. Computers and Graphics, 77, 80-87. https://doi.org/10.1016/j.cag.2018.10.003
  28. Nabiyouni, M., Saktheeswaran, A., Bowman, D. A., & Karanth, A. (2015). Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. Proceedings of the 2015 IEEE Symposium on 3D User Interfaces (pp. 3-10). Arles, France: IEEE.
  29. Paes, D., Arantes, E., & Irizarry, J. (2017). Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Automation in Construction, 84, 292-303. https://doi.org/10.1016/j.autcon.2017.09.016
  30. Park, S. (2010). A developed of virtual reality contents of cultural heritage utilize the haptic interface system - Focused on Keum-san-sa content-. Journal of Korea Design Forum, 26, 245-254. https://doi.org/10.21326/ksdt.2010..26.023
  31. Putwain, D. W., Symes, W., Nicholson, L. J., & Becker, S. (2018). Achievement goals, behavioural engagement, and mathematics achievement: A mediational analysis. Learning and Individual Differences, 68, 12-19. https://doi.org/10.1016/j.lindif.2018.09.006
  32. Reyes, M. R., Brackett, M. A., Rivers, S. E., White, M., & Salovey, P. (2012). Classroom emotional climate, student engagement, and academic achievement. Journal of Educational Psychology, 104(3), 700-712. https://doi.org/10.1037/a0027268
  33. Riecke, B. E., Bodenheimer, B., McNamara, T. P., Williams, B., Peng, P., & Feuereissen, D. (2010). Do we need to walk for effective virtual reality navigation? physical rotations alone may suffice. In International Conference on Spatial Cognition: Spatial cognition VII (pp. 234-247). Portland, USA: Springer.
  34. Ruddle, R. A., & Lessels, S. (2009). The benefits of using a walking interface to navigate virtual environments. ACM Transactions on Computer-Human Interaction, 16(1), 5.
  35. Ryu, J., & Yu, S. (2018). The effect of gesture based interface on presence perception and performance in the virtual reality earning Environment. The Korea Educational Review, 23(1), 35-56. https://doi.org/10.29318/ker.23.1.2
  36. Schnack, A., Wright, M. J., & Holdershaw, J. L. (2021). Does the locomotion technique matter in an immersive virtual store environment? - Comparing motion-tracked walking and instant teleportation. Journal of Retailing and Consumer Services, 58, 102266. https://doi.org/10.1016/j.jretconser.2020.102266
  37. Schubert, T., Friedmann, F, & Regenbrecht, H. (2001). The experience of presence: Factor analytic insights. Teleoperators & Virtual Environments, 10(3), 266-281. https://doi.org/10.1162/105474601300343603
  38. Selzer, M. N., Gazcon, N. F., & Larrea, M. L. (2019). Effects of virtual presence and learning outcome using low-end virtual reality systems. Displays, 59, 9-15. https://doi.org/10.1016/j.displa.2019.04.002
  39. Shin, D. (2019). How do users experience the interaction with an immersive screen? Computers in Human Behavior, 98, 302-310. https://doi.org/10.1016/j.chb.2018.11.010
  40. Silva, G. R., Donat, J. C., Rigoli, M. M., de Oliveira, F. R., & Kristensen, C. H. (2016). A questionnaire for measuring presence in virtual environments: factor analysis of the presence questionnaire and adaptation into Brazilian Portuguese. Virtual Reality, 20, 237-242. doi: 10.1007/s10055-016-0295-7.
  41. Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on engagement and disaffection. Conceptualization and assessment of children's behavioral and emotional participation in academic activities in the classroom. Educational and Psychological Measurement, 69, 493-525. doi: 10.1177/0013164408323233.
  42. Topu, F. B., & Goktas, Y. (2019). The effects of guided-unguided learning in 3d virtual environment on students' engagement and achievement. Computers in Human Behavior, 92, 1-10. https://doi.org/10.1016/j.chb.2018.10.022
  43. Triyason, T., & Krathu, W. (2017). The impact of screen size toward QoE of cloud-based virtual desktop. Procedia Computer Science, 111, 203-208. https://doi.org/10.1016/j.procs.2017.06.054
  44. Vasalampi, K., Muotka, J., Poysa, S., Lerkkanen, M. K., Poikkeus, A. M., & Nurmi, J. E. (2016). Assessment of students' situation-specific classroom engagement by an InSitu Instrument. Learning and Individual Differences, 52, 46-52. https://doi.org/10.1016/j.lindif.2016.10.009
  45. Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225-240. doi:10.1162/105474698565686.