• Title/Summary/Keyword: Virtual Movement

Search Result 402, Processing Time 0.026 seconds

An Efficient Location Based Service based on Mobile Augmented Reality applying Street Data extracted from Digital Map (도로 데이터를 활용한 모바일 증강현실 기반의 효율적인 위치기반 서비스)

  • Lee, Jeong Hwan;Jang, Yong Hee;Kwon, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.4
    • /
    • pp.63-70
    • /
    • 2013
  • With the increasing use of high-performance mobile devices such as smartphones, users have been able to connect to the Internet anywhere, anytime, so that Location Based Services(LBSes) have been popular among the users in order to obtain personalized information associated with their locations. The services have advanced to provide the information realistically and intuitively by adopting Augmented Reality(AR) technology, where the technology utilizes various sensors embedded in the mobile devices. However, the services have inherent problems due to the small screen size of the mobile devices and the complexity of the real world environment. Overlapping contents on a small screen and user's possible movement should be taken into consideration in displaying the icons on objects that block user's environment such as trees and buildings. The problems mainly happen when the services use only user's location and sensor data to calculate the position of the displayed information. In order to solve the problems, this paper proposes a method that applies street data extracted from a digital map. The method uses the street data as well as the location and direction data to determine contents that are placed on both sides of a virtual street which augments the real street. With scrolling the virtual street, which means a virtual movement, some information far away from the location of the user can be identified without user's actual movement. Also the proposed method is implemented for region "Aenigol", and the efficiency and usefulness of the method is verified.

Application of Virtual Studio Technology and Digital Human Monocular Motion Capture Technology -Based on <Beast Town> as an Example-

  • YuanZi Sang;KiHong Kim;JuneSok Lee;JiChu Tang;GaoHe Zhang;ZhengRan Liu;QianRu Liu;ShiJie Sun;YuTing Wang;KaiXing Wang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.106-123
    • /
    • 2024
  • This article takes the talk show "Beast Town" as an example to introduce the overall technical solution, technical difficulties and countermeasures for the combination of cartoon virtual characters and virtual studio technology, providing reference and experience for the multi-scenario application of digital humans. Compared with the live broadcast that combines reality and reality, we have further upgraded our virtual production technology and digital human-driven technology, adopted industry-leading real-time virtual production technology and monocular camera driving technology, and launched a virtual cartoon character talk show - "Beast Town" to achieve real Perfectly combined with virtuality, it further enhances program immersion and audio-visual experience, and expands infinite boundaries for virtual manufacturing. In the talk show, motion capture shooting technology is used for final picture synthesis. The virtual scene needs to present dynamic effects, and at the same time realize the driving of the digital human and the movement with the push, pull and pan of the overall picture. This puts forward very high requirements for multi-party data synchronization, real-time driving of digital people, and synthetic picture rendering. We focus on issues such as virtual and real data docking and monocular camera motion capture effects. We combine camera outward tracking, multi-scene picture perspective, multi-machine rendering and other solutions to effectively solve picture linkage and rendering quality problems in a deeply immersive space environment. , presenting users with visual effects of linkage between digital people and live guests.

Development of virtual reality simulation game synchronized with real robot (로봇과 동기화된 가상현실 시뮬레이션 게임의 개발)

  • Shim, Jae-Youn;Yoo, Hwan-Soo;Sung, Hyun-Seong
    • Journal of Korea Game Society
    • /
    • v.18 no.4
    • /
    • pp.33-42
    • /
    • 2018
  • Virtual reality can user experience the virtual world of computer and stimulate user eyesight and emotions. HMD can acquire and stimulate user behavior and sensory information. In this paper, we propose a virtual reality game using robot control. Controlling the robots using various interfaces and synchronizing them with the virtual reality game. In this paper, we use OID mat for robot movement detection based optical code recognition and Kalman filter.

A Study on the Pattern Development for Forest Fire Safety Clothing (산불진화용 안전복 패턴 개발을 위한 연구)

  • Choi, Mee-Sung
    • Fashion & Textile Research Journal
    • /
    • v.13 no.4
    • /
    • pp.624-634
    • /
    • 2011
  • The purpose of this study is to develop the pattern of safety clothes used at flat or mountainous areas and to identify the pattern of safety clothes by conducting experimental evaluation of virtual wear. Three subjects were selected, based on fire fighters' physical constitution. A prototype design for safety clothing was determined after in-depth interviewing of professionals and surveying of Forest service staff and related agency. Wearing test should be carried out in the order of pattern making, virtual and real wearing evaluation. For data analysis, technical statistical values should be obtained by using body measurements of subject, frequency analysis and T-test. The jacket is designed to have a front extension and the entire length of clothing enough for wearer to put on it over ordinary shirts or sweater. The collar of jacket is of round type. Cyber reality enables to identify the movement and activity of virtual fitting model and to find out errors or problems in safety clothing prior to on-the-spot wear test, thus raising the precision level of pattern. There was significant difference between real and virtual fit preference. The results show that the virtual try-on system need the development of a specific style.

Implementation of Virtual Realily Immersion System using Motion Vectors (모션벡터를 이용한 가상현실 체험 시스템의 구현)

  • 서정만;정순기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.87-93
    • /
    • 2003
  • The purpose of this research is to develop a virtual reality system which enables to actually experience the virtual reality through the visual sense of human. TSS was applied in tracing the movement of moving picture in this research. By applying TSS, it was possible to calculate multiple motion vectors from moving picture, and then camera's motion parameters were obtained by utilizing the relationship between the motion vectors. For the purpose of experiencing the virtual reality by synchronizing the camera's accelerated velocity and the simulator's movements, the relationship between the value of camera's accelerated velocity and the simulator's movements was analyzed and its result was applied to the neutral network training. It has been proved that the proposed virtual reality immersion system in this dissertation can dynamically control the movements of moving picture and can also operate the simulator quite similarly to the real movements of moving picture.

  • PDF

A VR-based pseudo weight algorithm using machine learning

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.53-59
    • /
    • 2021
  • In this paper, we propose a system that can perform dumbbell exercise by recognizing the weight of dumbbells without wearing and device. With the development of virtual reality technnology, many studies are being conducted to simulate the pysical feedback of the real world in the virtual world. Accurate motion recognition is important to the elderly for rehabilitation exercises. They cannot lift heavy dumbbells. For rehabilitation exercise, correct body movement according to an appropriate weight must be performed. We use a machine learning algorithm for the accuracy of motion data input in real time. As an experiment, we was test three types of bicep, double, shoulder exercise and verified accuracy of exercise. In addition, we made a virtual gym game to actually apply these exercise in virtual reality.

The Effects of 4 Weeks Training using Virtual Reality Game on Balance and Gait Ability, Depression of Elderly People (가상현실 게임을 이용한 4주간 훈련이 노인의 균형 및 보행 능력과 우울증에 미치는 효과)

  • Lee, Sang-Yeol;Lee, Su-Kyung;Kim, Young-Hoon;Chae, Jung-Byung
    • PNF and Movement
    • /
    • v.10 no.2
    • /
    • pp.41-46
    • /
    • 2012
  • Purpose : This study investigated the effect of 4 weeks training of virtual reality game on balance and gait ability, depression of elderly people. Methods : The subjects of this study were 12 elderly people over 65 age. The subjects were treated by training using virtual reality gam (during 60 minutes, 3 times a week for 4 weeks). The results of the experiment were analyzed using paired T-test along with averages and standard deviations as the statistical methods for data analyses. Results : In comparison of depression, gait and balance ability between pre-test and post-test, there were statistically significant differences. Conclusion : Our study finding indicate that training using virtual reality game could improve balance and gait ability, depression in elderly people. According to our study, training using virtual reality game is judged to be used for elderly people with gait and balance problems, depression to prevent fall down.

Research on UAV access deployment algorithm based on improved virtual force model

  • Zhang, Shuchang;Wu, Duanpo;Jiang, Lurong;Jin, Xinyu;Cen, Shuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2606-2626
    • /
    • 2022
  • In this paper, a unmanned aerial vehicle (UAV) access deployment algorithm is proposed, which is based on an improved virtual force model to solve the poor coverage quality of UAVs caused by limited number of UAVs and random mobility of users in the deployment process of UAV base station. First, the UAV-adapted Harris Hawks optimization (U-AHHO) algorithm is proposed to maximize the coverage of users in a given hotspot. Then, a virtual force improvement model based on user perception (UP-VFIM) is constructed to sense the mobile trend of mobile users. Finally, a UAV motion algorithm based on multi-virtual force sharing (U-MVFS) is proposed to improve the ability of UAVs to perceive the moving trend of user equipments (UEs). The UAV independently controls its movement and provides follow-up services for mobile UEs in the hotspot by computing the virtual force it receives over a specific period. Simulation results show that compared with the greedy-grid algorithm with different spacing, the average service rate of UEs of the U-AHHO algorithm is increased by 2.6% to 35.3% on average. Compared with the baseline scheme, using UP-VFIM and U-MVFS algorithms at the same time increases the average of 34.5% to 67.9% and 9.82% to 43.62% under different UE numbers and moving speeds, respectively.

Effects of auditory feedback and task difficulty on the cognitive load and virtual presence in a virtual reality dental simulation

  • Kim, Byunggee;Yang, Eunbyul;Choi, Namki;Kim, Seonmi;Ryu, Jeeheon
    • The Journal of the Korean dental association
    • /
    • v.58 no.11
    • /
    • pp.670-682
    • /
    • 2020
  • This research examined the difference in cognitive load and the virtual presence depending on auditory feedback and task difficulty in haptic-based dental simulation. In the field of dental education, practice-centered training using handpiece has been crucial because a practitioner's psychomotor experience has a significant impact on the mastery of treatment skills. For the novice, it is necessary to reduce errors in dental treatment to enhancing skill acquisition in the haptic practice. In the training process, the force-feedback is crucial to elaborate subtle movement to guide what to do and how it should be hard or soft. However, It is not easy to add force-feedback to generate kinetic experience training. As an alternative method, we examined that auditory feedback can help learners' skill training. In this study, we analyzed how the presence/absence of auditory feedback at the different levels of task difficulty impacts learners' psychological demand and virtual presence in the virtual reality simulation. For this study, 29 dental college students participated in a dental simulation. The participants were grouped into two conditions that are with and without auditory feedback. Additionally, two consecutive tooth preparation tasks with different levels of difficulty were used in the simulation. The auditory feedback condition gives alarms to a learner when he treats a non-targeted tooth with a virtual handpiece. The user's cognitive load and virtual presence were measured to examine the effects of auditory feedback. The results revealed that the main effect was found in cognitive loads. Also, a significant interaction effect was shown in the virtual presence. We discussed the effective design methods for the virtual reality-based dental simulation through the result of this study.

  • PDF

Creation of the dental virtual patients with dynamic occlusion and its application in esthetic dentistry (심미치의학 영역에서 동적 교합을 나타내는 가상 환자의 형성을 통한 전치부 보철 수복 증례)

  • An, Se-Jun;Shin, Soo-Yeon;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.222-230
    • /
    • 2022
  • Digital technology is gradually expanding its field and has a great influence on various fields of dentistry. Recently in digital dentistry, the importance of superimposing various 3-dimensional (3D) image data is emerging, in order to utilize gathered data effectively for diagnosis and prosthesis fabrication. Integrating data from facial scans, intraoral scans, and mandibular movement recordings can create a virtual patient. A virtual patient is formed by integrating digital 3D diagnostic data such as intraoral and extraoral soft tissues, residual dentition, and dynamic occlusion, and the results of prosthetic treatment can be evaluated virtually. The patients in this case report were a 37-year-old female whose chief complaint is that the appearance of the existing prosthesis was distorted and a 55-year-old female patient whose anterior prosthesis needed to be refabricated after the endodontic treatment. 3D facial scans were obtained from each patient, and the patient's mandibular movements were recorded using ARCUS Digma 2 (KaVo Dental GmbH, Biberach an der Riss, Germany). The collected data were integrated on computer-aided design (CAD) software (Exocad dental CAD; exocad GmbH, Darmstadt, Germany) and transferred to a virtual articulator to create a digital virtual patient. The temporary fixed prostheses were designed, restored, and evaluated, and it was reflected into the final restorations. With the aid of the virtual dental patient, accuracy and predictability could be increased throughout treatment, simplifying the occlusal adjustment and clinical evaluation with improved esthetic outcomes.