• 제목/요약/키워드: Virtual Manufacturing Method

검색결과 128건 처리시간 0.022초

웹을 이용한 실시간 소성가공의 해석에 관한 연구 (A Study on the Real Time Analysis of Plastic Deformation Process using WWW(World Wide Web))

  • 이상돈;최호준;방세윤;임중연;이호용
    • 소성∙가공
    • /
    • 제12권2호
    • /
    • pp.110-115
    • /
    • 2003
  • This paper is concerned with the compression test and forming process of flange by using virtual reality and analysis(simulation) program. This virtual manufacturing can be carried out one personal computer without any expensive devices for experiment. The virtual manufacturing composed of three modules such as the imput, calculation and the output modules on internet. Internet user can give the material's property and process parameters to the sever computer at the input module. On the calculation module, a simulator computes the virtual manufacturing process by analysis program and stores the data as a file. The output module is the program in which internet user can confirm virtual manufacturing results by showing tables, graphs, and 3D animation. This programs is designed by an internet language such as HTML, CGI, VRML and JAVA ,while analysis programs use the finite increasing, the virtual manufacturing technique will substitute many real experiments in the future.

공장 배치 계획에서 혼합현실의 적용을 위한 안전표지판 인식 (Recognition of Safety Sign Panel for Mixed Reality Application in a Factory Layout Planning)

  • 이종환;한순흥;천상욱
    • 한국CDE학회논문집
    • /
    • 제14권1호
    • /
    • pp.42-49
    • /
    • 2009
  • Virtual manufacturing technology has been applied in actual production sites with the development of virtual reality technology. However, the current virtual manufacturing technology requires experts for application of the system. Furthermore, the sense of reality is diminished as the entire simulation is driven by virtual objects. In contrast, mixed reality can visualize virtual objects and an actual work place simultaneously, and thus the sense of reality of the virtual manufacturing simulation can be improved. This paper introduces a method that applies mixed reality in the manufacturing process, and proposes a method to adapt general safety sign post in the factory instead of a black square marker for visual fiducial recognition.

An Integrated Simulation Method to Support Virtual Factory Engineering

  • Zhai, Wenbin;Fan, Xiumin;Yan, Juanqi;Zhu, Pengsheng
    • International Journal of CAD/CAM
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 2002
  • This paper presents a structure and architecture of an integrated simulation method (ISM) to meet the requirements of virtual factory engineering (VFE). Combining CAD, VR and discrete event simulation techniques, the ISM provides static and dynamic simulation functions for implementation of VFE throughout the lifecycle. The static simulation can be used to evaluate the factory layout. The dynamic simulation enables us to evaluate ergonomics of factory, process performance of production system, feasibility of production plan and operation of factory, and to train operators safely, which cover the whole VFE lifecycle. The principles of the key techniques of VFE, including virtual factory data management system (VFDMS), static and dynamic simulation, are also discussed. To demonstrate and validate the ISM, a case study has been carried out in an assembly factory.

가상제조환경에서 제품의 표면 거칠기 전달을 위한 촉각 디스플레이 (Tactile Display to Render Surface Roughness for Virtual Manufacturing Environment)

  • 이동준;박재형;이원균;민병권
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.17-22
    • /
    • 2016
  • In smart factories, the entire manufacturing process from design to the final product is simulated in a virtual manufacturing environment and optimized before starting production. Suppliers and customers make decisions based on the simulation results. Therefore, effective rendering of the information of the virtual products to suppliers and customers is essential for this manufacturing paradigm. In this study, a method of rendering the surface roughness of the virtual products using a tactile display is presented. A tactile display device comprising a $3{\times}3$ array of individually controlled piezoelectric stack actuators is constructed. The surface topology of the virtual products is rendered directly by controlling the piezoelectric stack actuators. A series of experiments is performed to evaluate the performance of the tactile display device. An electrical discharge machined surface is rendered using the proposed method.

Web 기반 가상공작기계의 구현 (Implementation of Web-based Virtual Machine Tools)

  • 정광식;서석환;서윤호;이현수
    • 한국CDE학회논문집
    • /
    • 제6권4호
    • /
    • pp.236-243
    • /
    • 2001
  • A key factor far realizing the internet-based virtual manufacturing system(VMS) and virtual enter-prise(VE) is how to precisely and effectively represent the machine elements and mechanics. In this paper, we present methods to represent the numerically controlled machine tools in the internet environment. The method is composed of: 1) geometrical modeling of the machine tools, 2) kinematic modeling for the movements of the machine tools, and 3) representing the developed model in the internet infrastructure. Based on the models. a web-based virtual machine tools (WVMT) is developed, and it can be accessed at hrrp://wvmt.postech.ac.kr. The WVMT can be used for various purposes: 1) web-based virtual manufacturing system, 2) web-based CAM system, and 3) CNC educational tools for the vocational school through internet.

  • PDF

가상제조환경을 위한 형상기구학 모델링 및 시뮬레이션으로의 DEVS 확장 (Extending the DEVS formalism toward Geometrical Kinematic Modeling and Simulation for Virtual Manufacturing Environment)

  • 황문호
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 추계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 1999
  • Proposed in this paper is a modeling and simulation methodology for a virtual manufacturing environment. Based on DEVS formalism[Zeigler 76], the proposed model, so called GKDEVS, is designed to descript the geometrical knematic structure as well as event-driven and continuous state dynamics. In terms of abstract simulation algorithm[Zeigler 84], the simulation method of GKDEVS is proposed for combined discrete-continuous simulation. Using the GKDEVS, and FMS model consisting of a turing machine, a 3-axis machine and a RGV-mounted robot is constructed and simulated.

  • PDF

고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화 (Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning)

  • 강유구;조재완;김석일
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

디지털 매뉴팩쳐링 기법을 이용한 절단기기의 검증된 가상 NC 시뮬레이터 구축 (Construction of a Verified Virtual NC Simulator for the Cutting Machines at Shipyard Using the Digital Manufacturing Technology)

  • 정호림;임현준;이장현;최양렬;김호구;신종계
    • 대한조선학회논문집
    • /
    • 제42권1호
    • /
    • pp.64-72
    • /
    • 2005
  • Digital manufacturing is a technology to simulate the real manufacturing process using the virtual model representing the physical schema and the behavior of the real manufacturing system including resources, processes and product information. Therefore, it can optimize the manufacturing system or prevent the bottleneck processes through the simulation before the manufacturing plan is executed. This study presents a method to apply the digital manufacturing technology for the steel cutting process in shipyard. The system modeling of cutting shop is carried out using the IDEF and UML which is a visual modeling language to document the artifacts of a complex system. Also, virtual NC simulators of the cutting machines are constructed to emulate the real operation of cutting machines and NC codes. The simulators are able to verify the cutting shape and estimate the precise cycle time of the planned NC codes. The validity of the virtual model is checked by comparing the real cutting time and shape with the simulated results. It is expected that the virtual NC simulators can be used for accurate estimation of the cutting time and shape in advance of real cutting work.

가상환경 기반의 컨베이어 시스템 검증을 위한 제어 시뮬레이션 연구 (A Study of PLC Simulation for Transport System in Virtual Environment)

  • 고민석;박상철
    • 한국CDE학회논문집
    • /
    • 제17권4호
    • /
    • pp.274-281
    • /
    • 2012
  • This paper proposed a control simulation method for design and verification of the transport system in an automobile assembly line based on digital manufacturing system. The design of the transport system involves two major activities: mechanical design (device specification) and electrical design (device behavior and system control). Conventionally, the simulation and emulation system of the transport system focuses on the abstract level, which mainly deals with design verification, alternative comparison, and system diagnosis. Although it can provide overall system visibility in monitoring how well it works in the process and view, its simulation models are not sufficiently realistic to be used for a detailed design or for implementation purposes. In this paper, a digital simulation model for a transport system in an automotive assembly line is constructed by adapting a digital manufacturing methodology. We use the concept of the "Virtual Probe", which transport a carrier instead of the belt of the conveyor. In conclusion, the proposed method is valuable in the process of test run in the shop floor. This method would reduce the time and effort for validating the manufacturing system and improve the productivity and integrity of the control program.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.