• Title/Summary/Keyword: Virtual Manikin

Search Result 5, Processing Time 0.025 seconds

Comparison of chest compression and ventilation volume using LUCAS and manual in virtual reality-based ambulance simulation -A manikin study- (가상실현 기반 구급차에서 루카스와 수기에 의한 가슴압박과 인공호흡 비교 -마네킨 연구-)

  • Lee, Jae-Gook;Kim, Jin-Su;Roh, Sang-Gyun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.22 no.3
    • /
    • pp.67-76
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the quality of chest compressions and ventilation when using an mechanical device(LUCAS) and 2-men manual cardiopulmonary resuscitation(CPR) performed on a minikin, as well as to propose a more effective CPR method during transit. Methods: Data were collected by LUCAS and manual virtual reality based ambulance simulation. Analysis was performed using SPSS software 12.0. The average and standard deviation of chest compression depth and ventilation were analyzed using descriptive statistics and t-test. Results: In the virtual reality based LUCAS and manual CPR results, LUCAS showed better chest compression and lower incomplete chest release than manual CPR. During CPR with a chest compression-ventilation ratio of 30:2 in virtual reality ventilation with bag-valve mask was able to deliver an adequate volume of breathing. Conclusion: It is suggested that rescuers on ambulance may consider using LUCAS as an alternative to high-quality chest compression during transit.

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).

3D Volumetric Capture-based Dynamic Face Production for Hyper-Realistic Metahuman (극사실적 메타휴먼을 위한 3D 볼류메트릭 캡쳐 기반의 동적 페이스 제작)

  • Oh, Moon-Seok;Han, Gyu-Hoon;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.751-761
    • /
    • 2022
  • With the development of digital graphics technology, the metaverse has become a significant trend in the content market. The demand for technology that generates high-quality 3D (dimension) models is rapidly increasing. Accordingly, various technical attempts are being made to create high-quality 3D virtual humans represented by digital humans. 3D volumetric capture is spotlighted as a technology that can create a 3D manikin faster and more precisely than the existing 3D model creation method. In this study, we try to analyze 3D high-precision facial production technology based on practical cases of the difficulties in content production and technologies applied in volumetric 3D and 4D model creation. Based on the actual model implementation case through 3D volumetric capture, we considered techniques for 3D virtual human face production and producted a new metahuman using a graphics pipeline for an efficient human facial generation.

Boundary Element Analysis for Head-Related Transfer Function in the Case of Korean Adults (경계요소법을 이용한 한국인 머리관련 전달함수의 특성 해석)

  • Lee, Doo-Ho;Ahn, Tae-Soo;Ki, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1035-1044
    • /
    • 2010
  • Head-related transfer function (HRTF) is an acoustic transfer function from a sound source to the ear canal entrance position. HRTFs are very important information in the construction of virtual sound fields. HRTFs also vary for different individuals. In this study, characteristics of HRTF for an average Korean are investigated numerically by comparing with the HRTF for a standard Knowles Electronics Manikin for Acoustic Research (KEMAR). A boundary element (BE) model for an adult Korean is developed using the computerized tomography (CT) data in order to investigate the variation in HRTFs for different individuals. The boundary conditions of the BE model are identified by comparing the numerical results with the experimental results. The numerical model shows that accurate HRTFs can be calculated efficiently over full audible frequency range for individuals.

Comparing the Effectiveness Between Typical Infant CPR method and Over-head CPR method : A Study of the Single-Person Rescuer Simulation Using a Manikin

  • Choi, Sung-Soo;Han, Seung-Tae;Yun, Seong-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.151-157
    • /
    • 2020
  • This study is to find out the effectiveness by Infant CPR method of a single rescuer. It was conducted for 51 general public. And typical infant CPR method by a single rescuer and a new method, CPR with two thumb chest compressions wrapped in both hands over the head were compared. SPSS 22.0 was used as an analysis method and to compare the both CPR methods, Paired t-test was used. As a result of the study, the average chest compression depth(39.38±1.07 mm) by CPR with two thumb chest compressions wrapped in both hands over the head was significantly high(p<0.001). Ease of mouth-to-mouth resuscitation(p<0.001), convenience of CPR method(p<0.001), and finger pain level(p<0.001) had a significant difference. As for the preference of the CPR method, 80.4%(41 people) preferred CPR with two thumb chest compressions wrapped in both hands over the head. In this study, CPR with two thumb chest compressions wrapped in both hands over the head showed more effective results than typical CPR method. However, as a virtual study using mannequins, further research is needed to apply high-quality CPR methods to field.