• Title/Summary/Keyword: Virtual Laboratory System

Search Result 134, Processing Time 0.021 seconds

A design and implementation of an in-service software upgrade technology to provide a seamless networking services (무중단 네트워킹 서비스 제공을 위한 서비스 중 소프트웨어 업그레이드 기술 설계 및 구현)

  • Yoon, Ho-sun;Ryu, Ho-yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1710-1716
    • /
    • 2016
  • In general, software upgrade technique is needed to add new features or fix bug of software on a network devices. However, the problem is that the software must be upgraded after the termination of networking service to replace new package. An ISSU(In-Service Software Upgrade) technique is used to solve such the problem. ISSU is a technology to upgrade the software without interrupting the network service or an offline network equipment. In this paper, to provide a seamless networking service, we design and implement an architecture to apply ISSU technique to a network operating system. In this paper, we use high-availability feature in N2OS which has been developed by ETRI. In addition, in order to verify that the implemented ISSU function is operation properly, we proceed to test using a test environment based on a virtual machine.

A Study of Non-Disruptive Update Scheme for Online Game (온라인게임을 위한 무 정지 업데이트 기법의 연구)

  • Kang, Sang-Yong;Han, Jung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1307-1312
    • /
    • 2014
  • Online games are virtual space where it connects individual users through network connection to offer enjoyment of play games and game developer who service online games have to develop new contents and provide them to users to extend life of their service. Typically, in order to update new contents, all service companies have maintenance schedule to stop the game service for a while to update both server and client applications. Usually this process takes quite amount of time and users do not have any other choice but disconnected from server and wait until it is over. The purpose of this thesis is to describe the advantages of new design system which will allows users to continue to play the game even during the update. The main focus of this design is to make users feel more convenience in online gaming experience by move client from previous server to new server while users are still playing. If they can to connect current client with new server without any certificate validation process while users information from the client can automatically pass through to the new server, users may not need to experience maintenance for new contents update.

Static performance analysis of deepwater compliant vertical access risers

  • Lou, Min;Li, Run;Wu, Wugang;Chen, Zhengshou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.970-979
    • /
    • 2019
  • Compliant Vertical Access Risers (CVARs) are compliant systems that incorporate a differentiated geometric configuration that allows the exploitation of oil and gas in deepwater fields and enables a number of operational advantages in the offshore system. One of the main features of CVAR systems is that they allow direct intervention procedures to be applied to the well bore, enabling workover operations to be performed directly from the production platform. Based on the principles of virtual work and variation, a static geometric nonlinear equation of CVARs is derived and applied in this study. The results of this study show that the two ends of the riser as well as the transition region are subject to high stress, while the positions of the floating platform exert significant effects on the geometry of the riser configuration. Compliance and buoyancy factors should be set moderately to reduce the CVAR stress. In addition, the buoyancy modules should be placed in the lower region, in order to maximize the operation advantages of CVAR.

Vibration analysis of defected and pristine triangular single-layer graphene nanosheets

  • Mirakhory, M.;Khatibi, M.M.;Sadeghzadeh, S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1327-1337
    • /
    • 2018
  • This paper investigates the vibration behavior of pristine and defected triangular graphene sheets; which has recently attracted the attention of researchers and compare these two types in natural frequencies and sensitivity. Here, the molecular dynamics method has been employed to establish a virtual laboratory for this purpose. After measuring the different parameters obtained by the molecular dynamics approach, these data have been analyzed by using the frequency domain decomposition (FDD) method, and the dominant frequencies and mode shapes of the system have been extracted. By analyzing the vibration behaviors of pristine triangular graphene sheets in four cases (right angle of 45-90-45 configuration, right angle of 60-90-30 configuration, equilateral triangle and isosceles triangle), it has been demonstrated that the natural frequencies of these sheets are higher than the natural frequency of a square sheet, with the same number of atoms, by a minimum of 7.6% and maximum of 26.6%. Therefore, for increasing the resonance range of sensors based on 2D materials, nonrectangular structures, and especially the triangular structure, can be considered as viable candidates. Although the pristine and defective equilateral triangular sheets have the highest values of resonance, the sensitivity of defective (45,90,45) triangular sheet is more than other configurations and then, defective (45,90,45) sheet is the worst choice for sensor applications.

Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing

  • Verma, Mohit;Rajasankar, J.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1325-1348
    • /
    • 2015
  • Real-time hybrid testing (RTHT) involves virtual splitting of the structure into two parts: physical substructure that contains the key region of interest which is tested in a laboratory and numerical substructure that contains the remaining part of the structure in the form of a numerical model. This paper numerically assesses four step-by-step integration methods (Central difference method (CDM), Operator splitting method (OSM), Rosenbrock based method (RBM) and CR-integration method (CR)) which are widely used in RTHT. The methods have been assessed in terms of stability and accuracy for various realistic damping ratios of the physical substructure. The stability is assessed in terms of the spectral radii of the amplification matrix while the accuracy in terms of numerical damping and period distortion. In order to evaluate the performance of the methods, five carefully chosen examples have been studied - undamped SDOF, damped SDOF, instantaneous softening, instantaneous hardening and hysteretic system. The performance of the methods is measured in terms of a non-dimensional error index for displacement and velocity. Based on the error indices, it is observed that OSM and RBM are robust and performs fairly well in all the cases. CDM performed well for undamped SDOF system. CR method can be used for the system showing softening behaviour. The error indices indicate that accuracy of OSM is more than other method in case of hysteretic system. The accuracy of the results obtained through time integration methods for different damping ratios of the physical substructure is addressed in the present study. In the presence of a number of integration methods, it is preferable to have criteria for the selection of the time integration scheme. As such criteria are not available presently, this paper attempts to fill this gap by numerically assessing the four commonly used step-by-step methods.

Flight Test of Helicopter Landing System Using Real-time DGPS (실시간 DGPS를 이용한 헬리콥터 착륙 시스템 개발)

  • Park, Sung-Min;Kim, Jung-Han;Whang, Duk-Ho;Jang, Jae-Gyu;Kee, Chang-Don;Park, Hyoung-Taek;Park, Hong-Man;Lee, Chang-Hyo
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.2
    • /
    • pp.108-119
    • /
    • 1999
  • In recent, there has been remarkable progress in the field of GPS applications. In a few years, an appreciable number of aircraft will adopt GPS as a landing guidance system because GPS is more economic, more reliable and more accurate than any other aviation systems. In this respect, we have performed several helicopter landing flight tests based on the real-time DGPS system made in SNUGL (Seoul National University GPS Laboratory). From the experimental results, we found several problems Which should be fixed to adopt DGPS as a aircraft landing guidance system. In this paper, we will introduce the problems found in tests and also suggest modifications to solve the problems. Our modifications can be classified into three parts. The first is about the attitude determination with single GPS antenna. The second deals with the cockpit display module. The display was devised to integrate the Instrument Landing System(ILS) with tunnel-the-sky using virtual reality. With the display, pilot can achieve more safe landings. The last part is the digital map. We inserted digital map into our system and put direction indicator on the map using position information from GPS. It is very useful for pilot to find airports even in bad weather. Using the newly designed DGPS landing system, we conducted flight test at Kimhae International Airport, Pusan, Korea. It was successful! Our system can also satisfy Category-I criterion for aircraft landing approach and determine attitude angle with a high level of reliability. It is supported by video materials.

  • PDF

Implementation of Real-Time Channel Module for Applying Wireless Communication Environments (무선 통신 환경 적용이 가능한 실시간 채널 모듈 구현)

  • Park, Chan Ju;Kim, Woojoong;Jang, Byung-Jun;Yoon, Hyungoo;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.438-444
    • /
    • 2016
  • In this paper, A real-time channel module which can apply the wireless propagation channel was developed using USRP and Lab-VIEW. When the proposed channel module is used in conjunction with the implemented HW(hardware) simulators for cognitive radio and frequency interference analysis and so on, it can increase the reliability about wireless propagation environments. In addition, the proposed module overcomes the limit of existing HW simulator that data transfer rate is limitative in communication system through the design of the inner parts. Along with this, it is possible to apply channel parameters necessary to estimate the easier communication performance. Also, this has the advantage that it can be flexibly applied in implementing the communication channel with the upcoming new scenarios. The proposed module can estimate the communication performance via constellation and BER using the implemented module.

Accuracy of full arch digital model obtained from rendering-based intraoral scanner(IOS) : An example of CS-3600 system (동영상 촬영방식의 구강스캐너로 채득된 전악치열 디지털모형의 정확도 분석 : CS-3600 시스템을 중심으로)

  • Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.42 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate and compare the accuracy of definitive casts that are fabricated from digital intraoral impression and conventional impression technique. Methods: A master model(ANNA-4, Frasaco GmbH, Tettnang, Germany) with the prepared upper full arch tooth was used. Conventional impression and then stone model(n=10) were produced from this master model, and on the other hands, digital impressions were made with the CS-3600 intraoral scanner(n=10). Six linear measurements were recorded between landmarks, directly on each of the stone models on two occasions by a single examiner. Measurements were made with a digital caliper to the nearest 0.01mm from manual models and with the software(Delcam PowerSHAPE) from the virtual models. The t-student test for paired samples and intraclass correlation coefficient(ICC) were used for statistical analysis. Results: The measurement of two methods showed good reliability. The ICC of the two models were 0.88~0.91(stone model) and 0.94~0.99(digital model). The mean differences to master model for stone model and digital model were 0.10~0.14mm, and 0.14~0.20mm, respectively. Conclusion: The definitive casts obtained with digital intraoral technique model had significantly larger dimensions as compared to those of the stone model. However, the differences to the master model detected appear to provide enough accuracy and reliability for clinical application.

Effects of Waveform Distribution of Tsunami-Like Solitary Wave on Run-up on Impermeable Slope (고립파(지진해일)의 파형분포가 불투과 경사면의 처오름에 미치는 영향)

  • Lee, Woo-Dong;Kim, Jung-Ouk;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.76-84
    • /
    • 2019
  • For decades, solitary waves have commonly been used to simulate tsunami conditions in numerical studies. However, the main component of a tsunami waveform acts at completely different spatial and temporal distributions than a solitary waveform. Thus, this study applied a 2-D numerical wave tank that included a non-reflected tsunami generation system based on Navier-Stokes equations (LES-WASS-2D) to directly simulate the run-up of a tsunami-like solitary wave on a slope. First, the waveform and velocity due to the virtual depth factor were applied to the numerical wave tank to generate a tsunami, which made it possible to generate the wide waveform of a tsunami, which was not reproduced with the existing solitary wave approximation theory. Then, to validate the applied numerical model, the validity and effectiveness of the numerical wave tank were verified by comparing the results with the results of a laboratory experiment on a tsunami run-up on a smooth impermeable 1:19.85 slope. Using the numerical results, the run-up characteristics due to a tsunami-like solitary wave on an impermeable slope were also discussed in relation to the volume ratio. The maximum run-up heights increased with the ratio of the tsunami waveform. Therefore, the tsunami run-up is highly likely to be underestimated compared to a real tsunami if the solitary wave of the approximation theory is applied in a tsunami simulation in a coastal region.

Development of a self-leveling system for the bucket of an agricultural front-end loader using an electro hydraulic proportional valve and a tilt sensor (전자유압 비례밸브와 경사센서를 이용한 농용 프론트 로더 버켓 능동수평유지 시스템 개발)

  • Lee, Chang Joo;Ha, Jong Woo;Choi, Deok Su;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 2015
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements for farm work. However, when the tractor carries material using the bucket attached to the FEL on a sloping ground, the materials can spill or roll back over the operator due to the tilted body, thereby requiring the bucket surface to remain level at a constant value regardless of varying slopes. In this study, an active system for controlling the angle of the FEL bucket on a tractor based on the real-time measurement of ground slopes was developed to enable the bucket to constantly remain level. A FEL simulator operated based on an electro hydraulic proportional valve (EHPV) was constructed in the laboratory to develop a proportional-integral-derivative (PID) controller forming a virtual electronic control unit (ECU) on the computer, which could automatically adjust the bucket angles depending on varying input angles while sending SAE-J1939 associated messages via CAN BUS to the EHPV. The different parameter values for the PID controller due to the gravity effect of the bucket were determined using a manual PID tuning method while assuming that the tractor travels on either an ascending slope or a descending slope. The developed PID control-based self-leveling system showed a mean of steady-state errors of within $1^{\circ}$ and a mean of delayed times of ~ 0.8s when the step input of $+20^{\circ}$ was given, implying that the developed system and control algorithm would be effective in maintaining the bucket angle at a certain value. Future studies include the improvement of the control algorithm to reduce such a time delay as well as the application of the developed algorithm to the FEL mounted on a tractor tested at a testing ground.