• Title/Summary/Keyword: Virtual Engineering

Search Result 4,469, Processing Time 0.035 seconds

Dual Virtual Cell: a New Concept of Virtual Cell in Distributed Wireless Communication System (분산무선시스템 기반의 새로운 Dual Virtual Cell 개념 및 운용방안)

  • Yang, Joo-Young;Kim, Jeong-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.19-22
    • /
    • 2005
  • In order to achieve high capacity and reliable link quality in user communication, this paper proposes a new concept of virtual cell: the Dual Virtual Cell(DVC), and DVC employment strategy based on DWCS. The proposed system uses two kinds of virtual cell. One is the AVC(Active Virtual Cell) which exists for actual traffic and the other is the CVC(Candidate Virtual Cell) which contains a set of candidate antennas to protect user's link quality from performance degradation or interruption. And also this system aims to reduce MT's overloads and acheive a prompt link change successfuly by introducing DVC structure which makes it possible for network to monitor real-time channel and to conrol communication links. The proposed system constructs DVC by using antenna selection method and improves frame error performance with employing Space-Time Trellis Code(STTC).

  • PDF

Virtual Manufacturing for an Automotive Company(III) - Construction and Operation of a Virtual Paint Shop (자동차 가상생산 기술 적용(III) - 가상 도장공장구축 및 운영)

  • Noh, Sang-Do;Kim, Duck-Young;Park, Young-Jin
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.356-363
    • /
    • 2002
  • Virtual Manufacturing is a technology to facilitate effective product development and agile production by computer models representing the physical and logical schema and the behavior of real manufacturing systems including manufacturing resources, environments and products. For the successful application of this technology, a virtual factory as a well-designed and integrated environment is essential. In this research, we constructed a sophisticated virtual factory model of an automotive company's paint shop, and performed precise simulations of unit cells, lines and whole plant operations for collision check and off-line programming. It is expected that this virtual paint shop is useful for achieving time and cost savings in many manufacturing preparation and planning activities of new car development processes.

Multimodal Interface Control Module for Immersive Virtual Education (몰입형 가상교육을 위한 멀티모달 인터페이스 제어모듈)

  • Lee, Jaehyub;Im, SungMin
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.5 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • This paper suggests a multimodal interface control module which allows a student to naturally interact with educational contents in virtual environment. The suggested module recognizes a user's motion when he/she interacts with virtual environment and then conveys the user's motion to the virtual environment via wireless communication. Futhermore, a haptic actuator is incorporated into the proposed module in order to create haptic information. Due to the proposed module, a user can haptically sense the virtual object as if the virtual object is exists in real world.

  • PDF

A Real-Time Graphic Driving Simulator Using Virtual Reality Technique (가상현실을 이용한 실시간 차량 그래픽 주행 시뮬레이터)

  • Jang, Jae-Won;Son, Kwon;Choi, Kyung-Hyun;Song, Nam-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.80-89
    • /
    • 2000
  • Driving simulators provide engineers with a power tool in the development and modification stages of vehicle models. One of the most important factors to realistic simulations is the fidelity obtained by a motion bed and a real-time visual image generation algorithm. Virtual reality technology has been widely used to enhance the fidelity of vehicle simulators. This paper develops the virtual environment for such visual system as head-mounted display for a vehicle driving simulator. Virtual vehicle and environment models are constructed using the object-oriented analysis and design approach. Based on the object model, a three-dimensional graphic model is completed with CAD tools such as Rhino and Pro/ENGINEER. For real-time image generation, the optimized IRIS Performer 3D graphics library is embedded with the multi-thread methodology. The developed software for a virtual driving simulator offers an effective interface to virtual reality devices.

  • PDF

Medical Digital Twin-Based Dynamic Virtual Body Capture System (메디컬 디지털 트윈 기반 동적 가상 인체 획득 시스템)

  • Kim, Daehwan;Kim, Yongwan;Lee, Kisuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1398-1401
    • /
    • 2020
  • We present the concept of a Medical Digital Twin (MDT) that can predict and analyze medical diseases using computer simulations and introduce a dynamic virtual body capture system to create it. The MDT is a technology that creates a 3D digital virtual human body by reflecting individual medical and biometric information. The virtual human body is composed of a static virtual human body that reflects an individual's internal and external information and a dynamic virtual human body that reflects his motion. Especially we describe an early version of the dynamic virtual body capture system that enables continuous simulation of musculoskeletal diseases.

VM Consolidation Based On Dynamic Programing Knapsack Algorithm (Dynamic Programing Knapsack 알고리즘 기반의 가상머신 통합)

  • Kim, MinHoe;Seo, SungWon;Park, MinHo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.173-176
    • /
    • 2014
  • 구동에 필요한 다수의 Virtual Machine을 물리적 서버 안에 Consolidation하게 구성하면, 물리적 서버의 개수를 최소화시켜 에너지 소모를 줄일 수 있다. 이 논문에서는, 하드웨어 요구량에 따른 Virtual Machine Consolidation과 시간 패턴에 따른 Virtual Machine Consolidation을 Energy Saving 관점으로 비교하고, 에너지 효율적인 Virtual Machine Consolidation 알고리즘을 제안한다.

Development of VR Monitoring System for Gas Plant (가상현실을 이용한 가스플랜트의 VR Monitoring System 개발)

  • Suh, Myung-Won;Cho, Ki-Yang;Park, Dae-You
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.213-218
    • /
    • 2001
  • VR (Virtual reality) technologies have given engineers the ability to design, test, and evaluate engineering systems in a virtual environment. The virtual plant is the highlight of the application of the VR technology to plant engineering. Plant design, maintenance, control, management, operation are integrated in the virtual plant. The VR monitoring system including the concept of the virtual plant is developed to replace a current control room that has number of gages and warning lamps in two-dimensional panels which shows the operating status of a plant. The operating status of the plant is displayed in the VR monitoring system through the realistic computer graphics. Sophisticated, realistic and prompt control becomes possible. The VR monitoring system consists of advanced visualization, walk-through simulation and navigation. In the virtual environment, a user can navigate and interact with each component of a plant. In addition, the user can access the information by just clicking interesting component. The VR monitoring system is operated with various modules, such as (1) virtual plant constructed with Graphic Management System (GMS), (2) Touch & Tell System, and (3) Equipment DB System of Part. In order to confirm the usefulness of the VR monitoring system, a pilot gas plant which is currently being used for plant operator training is taken as application. The end of the paper gives an outlook on the future work and a brief conclusion.

  • PDF

Knowledge Evaluation of Individual Competence for Virtual Project Organization (가상 프로젝트 조직의 개인관점 지식역량 평가)

  • Lee, Kyung-Huy;Kim, Cheol-Han;Woo, Hoon-Shik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.133-141
    • /
    • 2012
  • Virtual project organization may be recognized as one of the promising business models in which many knowledge sources externalize through cross boundaries of knowledge-based organizations. This paper proposes a knowledge competence evaluation of virtual project organization based on the following perspectives: 1) Individual knowledge perspective, 2) Activity-oriented knowledge perspective, and 3) Knowledge-driven social network perspective. In the framework, individual knowledge competence having experienced or learned from knowledge-based activities and virtual networks in the project, should be evaluated according to the assumption that knowledge and collaboration competence depends on the activities and networks acquired proportionally by the past participation to projects. An illustrative SI example is given in order to validate the proposed evaluation and computing procedure.