• Title/Summary/Keyword: Virtual Data

Search Result 2,777, Processing Time 0.029 seconds

2D Interpolation of 3D Points using Video-based Point Cloud Compression (비디오 기반 포인트 클라우드 압축을 사용한 3차원 포인트의 2차원 보간 방안)

  • Hwang, Yonghae;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.692-703
    • /
    • 2021
  • Recently, with the development of computer graphics technology, research on technology for expressing real objects as more realistic virtual graphics is being actively conducted. Point cloud is a technology that uses numerous points, including 2D spatial coordinates and color information, to represent 3D objects, and they require huge data storage and high-performance computing devices to provide various services. Video-based Point Cloud Compression (V-PCC) technology is currently being studied by the international standard organization MPEG, which is a projection based method that projects point cloud into 2D plane, and then compresses them using 2D video codecs. V-PCC technology compresses point cloud objects using 2D images such as Occupancy map, Geometry image, Attribute image, and other auxiliary information that includes the relationship between 2D plane and 3D space. When increasing the density of point cloud or expanding an object, 3D calculation is generally used, but there are limitations in that the calculation method is complicated, requires a lot of time, and it is difficult to determine the correct location of a new point. This paper proposes a method to generate additional points at more accurate locations with less computation by applying 2D interpolation to the image on which the point cloud is projected, in the V-PCC technology.

Spatial Replicability Assessment of Land Cover Classification Using Unmanned Aerial Vehicle and Artificial Intelligence in Urban Area (무인항공기 및 인공지능을 활용한 도시지역 토지피복 분류 기법의 공간적 재현성 평가)

  • Geon-Ung, PARK;Bong-Geun, SONG;Kyung-Hun, PARK;Hung-Kyu, LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.63-80
    • /
    • 2022
  • As a technology to analyze and predict an issue has been developed by constructing real space into virtual space, it is becoming more important to acquire precise spatial information in complex cities. In this study, images were acquired using an unmanned aerial vehicle for urban area with complex landscapes, and land cover classification was performed object-based image analysis and semantic segmentation techniques, which were image classification technique suitable for high-resolution imagery. In addition, based on the imagery collected at the same time, the replicability of land cover classification of each artificial intelligence (AI) model was examined for areas that AI model did not learn. When the AI models are trained on the training site, the land cover classification accuracy is analyzed to be 89.3% for OBIA-RF, 85.0% for OBIA-DNN, and 95.3% for U-Net. When the AI models are applied to the replicability assessment site to evaluate replicability, the accuracy of OBIA-RF decreased by 7%, OBIA-DNN by 2.1% and U-Net by 2.3%. It is found that U-Net, which considers both morphological and spectroscopic characteristics, performs well in land cover classification accuracy and replicability evaluation. As precise spatial information becomes important, the results of this study are expected to contribute to urban environment research as a basic data generation method.

What Did Elementary School Pre-service Teachers Focus on and What Challenges Did They Face in Designing and Producing a Guided Science Inquiry Program Based on Augmented Reality? (증강현실 기반의 안내된 과학탐구 프로그램 개발에서 초등 예비교사들은 무엇에 중점을 두고, 어떤 어려움을 겪는가?)

  • Chang, Jina;Na, Jiyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.725-739
    • /
    • 2022
  • This study aims to analyze what elementary school pre-service teachers focused on and what challenges they faced in designing and producing a guided science inquiry program based on augmented reality (AR) and to provide some implications for teachers' professionalism and teacher education. To this end, focusing on the cases of pre-service teachers who designed and created AR-based guided inquiry programs, the researchers extracted and categorized the pre-service teachers' focus and challenges from the program design and production stages. As a result, in the program design stage, the pre-service teachers tried to construct scenarios that could promote students' active inquiry process. At the same time, drawing on the unique affordances of AR, the pre-service teachers focused on creating vivid visual data in a 3D environment and making meaningful connections between virtual and real-world activities. The pre-service teachers faced challenges in making use of the advantages of AR technology and designing an inquiry program due to a lack of background knowledge about CoSpaces, a content creation program. In the program production stage, the pre-service teachers tried to make their program easy to handle to improve students' concentration on inquiry activities. In addition, challenges of programming using CoSpaces were reported. Based on these results, educational implications were discussed in terms of the pedagogical uses of AR and teachers' professionalism in adopting AR in science inquiry.

An Exploratory research on patent trends and technological value of Organic Light-Emitting Diodes display technology (Organic Light-Emitting Diodes 디스플레이 기술의 특허 동향과 기술적 가치에 관한 탐색적 연구)

  • Kim, Mingu;Kim, Yongwoo;Jung, Taehyun;Kim, Youngmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.135-155
    • /
    • 2022
  • This study analyzes patent trends by deriving sub-technical fields of Organic Light-Emitting Diodes (OLEDs) industry, and analyzing technology value, originality, and diversity for each sub-technical field. To collect patent data, a set of international patent classification(IPC) codes related to OLED technology was defined, and OLED-related patents applied from 2005 to 2017 were collected using a set of IPC codes. Then, a large number of collected patent documents were classified into 12 major technologies using the Latent Dirichlet Allocation(LDA) topic model and trends for each technology were investigated. Patents related to touch sensor, module, image processing, and circuit driving showed an increasing trend, but virtual reality and user interface recently decreased, and thin film transistor, fingerprint recognition, and optical film showed a continuous trend. To compare the technological value, the number of forward citations, originality, and diversity of patents included in each technology group were investigated. From the results, image processing, user interface(UI) and user experience(UX), module, and adhesive technology with high number of forward citations, originality and diversity showed relatively high technological value. The results provide useful information in the process of establishing a company's technology strategy.

Comparison of Commercial Multi-use Mask Patterns for Korean Adult Women

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.185-193
    • /
    • 2022
  • This study attempted to compare and analyze the commercially available multi-use patterns to develop mask patterns suitable for the face types of adult women. Through this, it was intended to provide necessary data to mask pattern development and products. As a results of comparing the dimensions and shapes of commercial multi-use mask patterns, there was a significant difference in dimensions even though it was a L-size mask manufactured for adults. As a result of the appearance evaluation of the virtual outfit, there were significant differences by design in the vertical of the center front line, the cover and space of the mask, the height of the nose, and the lower part of the mask. The side also showed significant differences in the covering of the side of the face, the space of the side, and the width and length of the string. As a result of the appearance evaluation, Mask 4 received the best evaluation. The shape of the mask pattern had a large dart in the lower part of the nose so that it can cover the three-dimensional shape of the face, but there was a difference in the degree and angle of the curve depending on the mask. Although the upper part of the mask, the lower part of the mask, and the cheek part are in close contact, the evaluation of the mask pattern, which has room in the nose and mouth, was high. It is thought that the mask pattern should be set according to the upper length, lower length, and nose height of the mask through analysis of the face shape and dimensions.

Case study on the effects of VR educational media on oral imaging practice (치위생학과 구강영상학실습 수업에서의 VR활용에 관한 사례 연구)

  • Choi, Yong-Keum;Lim, Kun-Ok
    • Journal of Korean society of Dental Hygiene
    • /
    • v.22 no.5
    • /
    • pp.323-332
    • /
    • 2022
  • Objectives: This study aims to confirm the educational necessity and utilization of VR media. And it was conducted to prepare basic data necessary for the use of VR in various dental hygiene education in the future and the development of innovative practical training courses. Methods: Before and after using VR in oral radiology practice classes, learning interest (4 items), learning commitment (9 items), learning motivation (5 items), educational media preference (4 items), and satisfaction (10 items) were investigated and analyzed. Friedman two way ANOVA by ran a nonparametric analysis corresponding to repeated measures ANOVA was performed. The statistical significance level was 0.05. Results: It was found that there were statistically significant differences in learning interest, learning immersion, and learning motivation according to the type of oral radiology practice education medium (p<0.05). Conclusions: VR is expected that the use of learning media using VR will lead to students' interest, immersion, and learning motivation in class, and that positive learning effects on VR education media can be sufficiently obtained.

A Study on A Deep Learning Algorithm to Predict Printed Spot Colors (딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구)

  • Jun, Su Hyeon;Park, Jae Sang;Tae, Hyun Chul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

A Study on 3D Virtual Restoration and Convergence Utilization of Gas Masks for Digital Reproduction of War Cultural Heritage (전쟁 문화유산 디지털 재현을 위한 방독면 3D 가상 복원 및 융합 활용 연구)

  • Hyoung-Ki Ahn;Seung-Jun Oh;Ho-Yeon Lee;Young-Guy Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-95
    • /
    • 2023
  • In January 2007, the Remains Excavation and Investigation Team of the Ministry of National Defense was established, and full-scale excavation of remains was promoted. Currently, the scope of the excavation is being expanded to Baekma Hill within the DMZ, where fierce battles were fought during the Korean War. Now, many remains and remains are being excavated in Baekma hill. Most are in damaged condition. Therefore, in this study, the original form of the excavated remains was restored using 3D scanning and 3D modeling. This digital restoration method can be an alternative to compensate for the disadvantages of the manual method. Currently, various digital restorations using 3D technology are active in the field of cultural heritage. Digitally restored materials can be used as basic data for digital heritage. Based on this, various contents related to excavation of remains and patriots and veterans can be developed. Furthermore, if digital human restoration is made based on the excavated remains, it will be possible to reproduce the appearance of the dead.

A Study on Technology Acceptance Plans to Expand Direct Participation in the Sports Industry (스포츠 산업의 직접 참여 확대를 위한 기술수용 방안 연구)

  • Sangho Lee;Kwangmoon Cho
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.105-115
    • /
    • 2023
  • This study seeks to find a way to induce users to expand their direct participation in sports through the acceptance of digital technology. From July 1 to August 30, 2022, a survey was conducted targeting home training users who applied the Internet of Things (IoT). 129 people participated in the survey through non-face-to-face self-administration method. For data processing, frequency analysis, exploratory factor analysis, reliability analysis, correlation analysis, multiple regression analysis, and 3-step mediation regression analysis were conducted using IBM's SPSS 21.0 program. The results of the study are as follows. First, in the relationship between the home training PPM model and direct participation in sports, ease appeared to have a mediating effect. In the factors of push, simple functionality showed a complete mediating effect, and inefficiency showed a partial mediating effect. Among pull factors, enjoyment and possibility of experience showed a complete mediating effect. In the mooring factors, individual innovativeness showed a complete mediating effect. Second, in the relationship between home training PPM model and direct participation in sports, usefulness showed a mediating effect. In the factors of push, simple functionality showed a complete mediating effect, and inefficiency showed a partial mediating effect. Among pull factors, enjoyment and possibility of experience showed a complete mediating effect. Among the mooring factors, individual innovativeness showed a partial mediating effect. Through this research, it is expected that the sports industry will contribute to the expansion of consumption expenditure and economic growth through the expansion of digital technologies such as NFT, Metaverse, and virtual/augmented reality.

Analysis of Tree Roughness Evaluation Methods Considering Depth-Dependent Roughness Coefficient Variation (수심별 조도계수 변화를 고려한 수목 조도공식 특성 분석)

  • Du Han Lee;Dong Sop Rhee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.51-63
    • /
    • 2023
  • Riverine tree management is crucial in realizing a balance between flood control and ecological preservation, which requires an accurate assessment of the impact of trees on river water elevations. In this study, eight different formulas for evaluating vegetation roughness considering the drag force acting on trees, were reviewed, and the characteristics and applicability of these methods were evaluated from a practical engineering perspective. The study compared the characteristics of vegetation roughness measurement methods for calculated roughness coefficients at different water depths and analyzed factors such as effects of tree canopy width, tree density and diameter, and tree stiffness coefficient, and water level estimation results. A comparison of roughness coefficients at the same water depths revealed that the Kouwen and Fathi-Moghadam formulas and the Fischenich formula yield excessive drag coefficients compared to other formulas. Factors such as channel geometry, tree diameter, and tree density showed varying trends depending on the formula but did not exhibit excessive outliers. Formulas considering the tree stiffness coefficient, such as the Freeman et al.'s formula and the Whittaker et al.'s formula, showed significant variations in drag coefficients depending on the stiffness coefficient. When applied to small- and medium-sized virtual rivers in South Korea using the drag coefficient results from the eight formulas, the results indicated a maximum increase in water level of approximately 0.2 to 0.4 meters. Based on this review, it was concluded that the Baptist et al., Huthoff et al., Cheng, Luhar, and Nepf's formulas, which exhibit similar characteristics and low input data uncertainties, are suitable for practical engineering applications.