• Title/Summary/Keyword: Virtual Prototyping

Search Result 102, Processing Time 0.028 seconds

Survivability, Mobility, and Functionality of n Rover for Radars in Polar Regions

  • Stansbury, Richard S.;Akers, Eric L.;Harmon, Hans P.;Agah, Arvin
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.343-353
    • /
    • 2004
  • This paper presents the survivability, mobility, and functionality of a rover as part of a radar system for polar regions. Rovers can provide autonomy and precision for radars used to measure ice thickness and other characteristics of ice sheets in Greenland and Antarctica. These rovers can be used to move radar antennas in precise patterns for synthetic aperture radars while providing environmental protection and power to the onboard radar equipment. This paper describes the mobility, actuation, sensing, winterization, control, and virtual prototyping of a polar rover. The rover has been successfully tested in Greenland.

Automotive Embedded System Software Development and Validation with AUTOSAR and Model-based Approach (AUTOSAR와 모델기반 기법을 적용한 차량 임베디드 시스템 소프트웨어의 개발 및 검증 기법)

  • Kum, Dae-Hyun;Son, Jang-Kyung;Kim, Myung-Jin;Son, Joon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1179-1185
    • /
    • 2007
  • This paper presents a new approach to automotive embedded systems development and validation. Recently automotive embedded systems become even more complex and the product life cycle is getting reduced. To overcome these problems AUTOSAR, a standardized software platform and component based approach, was introduced. Model-based approach has been widely applied in the development of embedded systems and has strong benefits such as early validation and automated testing. In this paper cooperative development and validation of AUTOSAR and model-based approach are introduced and automated testing techniques are proposed. With the proposed techniques we can improve complexity management through increased reuse and exchangeability of software module and automated testing is realized.

Virtual Prototyping Environment on ARMulator (ARMulator기반의 가상 프로토타이핑 환경)

  • 김곤;조상영;이정배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.592-594
    • /
    • 2004
  • 프로토타입핑은 제품 개발을 위한 필요한 과정이지만 실제로 제품의 모형을 만든 후에 외형 및 기능을 검사하기 때문에 제품 개발 시간과 비용이 많이 들게 된다 컴퓨터 기술을 이용한 가상 프로토타이핑 시스템은 이러한 단점을 보안하기 때문에 않은 연구가 되고 있다 본 논문에서는 내장형 시스템 개발용 가상 프로토타입 플렛폼 제작을 위해 PDA와 휴대형 단말장치에서 가장 많이 사용되는 ARM코어를 기반으로 하는 ARMulator상에 하드웨어 IP를 구현하고 실시간 운영교제인 UC/OS-11를 이식하여 내장형 소프트웨어 개발용 가상 프로토타이핑의 환경을 구축하였다. 세 개의 타스크로 구성된 검사 프로그램를 운영하여 구축된 시스템의 동작을 확인하였다. 구축된 시스템은 내장형 시스템의 소프트웨어 개발을 위한 가상 환경을 제공한다.

  • PDF

Dynamic Model of PEM Fuel Cell Using Real-time Simulation Techniques

  • Jung, Jee-Hoon;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.739-748
    • /
    • 2010
  • The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane (PEM) fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting computation speeds for a fuel cell model on a real-time simulator which can be used in a power hardware-in-the-loop (PHIL) application. Significant improvement in computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator is verified using experimental results from a Ballard Nexa fuel cell system.

Dynamics Modeling of a Gas Engine-Driven Heat Pump in Cooling Mode

  • Shin Younggy;Yang Hooncheul;Tae Choon-Seob;Jang Cheol-Yong;Cho Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.278-285
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for design of control algorithm. The dynamics modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fans, coolant three-way valves and liquid injection valves were PI or P controlled. The simulation results were found to be realistic enough to apply for control algorithm design. The model can be applied to build a virtual real-time GHP system so that it interfaces with a real controller in purpose of prototyping control algorithm.

Design and Implementation of NUI-based Athletic Scene Generation System

  • Choi, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we propose a system and an intuitive interface that can create an athletic scene among athletes. We allow you to enter motion as if you were playing a game, so that the user's action becomes the player's action. The user can take various actions in front of the motion sensor and control the object flying to him. When a user specifies an opponent to pass or attack, and takes appropriate action in front of the motion sensor, the movement trajectory of the object is automatically generated by the physical optimization technique in accordance with the motion. In this way, you can create scenes where multiple players play together in a virtual environment. The method of this paper will be very useful for rapid prototyping for cinematic trailers of based on athletics games or animations.

The Design and Implementation of RapidPLUS Based Virtual Prototyping for Multimedia Player (멀티미디어 플레이어를 위한 RapidPLUS 기반 가상 프로토타이핑 설계 및 구현)

  • Adu, Emmanuel;Ahn, SungSoon;Lee, Jeong B.;Choi, SungHee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.64-67
    • /
    • 2010
  • 프로토타이핑 시스템 설계에서 프로토타이핑은 실제 모델과 같은 초기 모형을 뜻하는 것으로 개발 초기에 시스템의 모형을 간단히 만들어 사용자에게 제시하여 사용자로 하여금 실제 작동시켜 기능의 추가, 변경 내지 삭제를 요구하도록 하여 시스템을 점차적으로 개선시켜 나가도록 하는 방식을 말한다. 가상 프로토타이핑은 임베디드 소프트웨어 개발 초기단계에서 사용자 혹은 의뢰자의 요구사항들을 효과적으로 추출할 수 있도록 고안된 시스템 요구 및 제약조건 추출 방법론이다. 본 논문에서는 가상 프로토타이핑 기법을 이용하여 멀티미디어 플레이어의 다양한 기능을 시뮬레이션 할 수 있는 가상 프로토타입을 설계 및 구현한다.

A Study on Design Parameters for Ready-made Ear Shell of Hearing Aids (보청기용 범용 이어쉘을 위한 설계 파라미터에 관한 연구)

  • Urtnasan, Erdenebayar;Jeon, Yu-Yong;Park, Gyu-Seok;Song, Young-Rok;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1055-1061
    • /
    • 2011
  • In this study, main parameters: aperture, first bend and second bend which express a structure of ear canal are extracted in order to modeling and manufacture the ready-made ear shells of hearing aids. The proposed parameter extraction method consists of 2 important algorithms, aperture detection and feature detection. In the aperture detection algorithm, aperture of 3-D scanned virtual ear impression and parameters relating to ear shell of hearing aid are determined. The feature detection algorithm detects first bend, second bend, and related parameters. Through these two algorithms, parameters for aperture, first bend, and second bend are extracted to model the ready-made ear shell of hearing aid. The values of these extracted parameters from 36 people's right ear impression are analyzed and measured statistically. As a result of the analysis, it has been found that it is possible to classify ready-made ear shell parameters by age and size. The ready-made ear shell parameters are classified 3-size for 20 years old and 2-size for 60 years olde. Using 3D rhino program, virtual ready-made ear shell is reconstructed by parameters of every type, and simulated to model it. A final product was produced by transferring simulation result with rapid prototyping system. The modeled ready-made ear shell is evaluated with the objective and subjective method. Objective method is the comparison volume ratio and overlapped volume ratio of ear impression from randomly chosen 18 people and ready-made ear shell. And subjective method is that the final product of ready-made ear shell is used by users and the satisfaction number drawn from well fitting and comfortable testing was evaluated. In the result of the evaluation, it has been found that volume ration is 70%, big and middle size ready-made ear shell products are possible, and the satisfaction number is high.

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.

Feature-Based Multi-Resolution Modeling of Solids Using History-Based Boolean Operations - Part I : Theory of History-Based Boolean Operations -

  • Lee Sang Hun;Lee Kyu-Yeul;Woo Yoonwhan;Lee Kang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.549-557
    • /
    • 2005
  • The requirements of multi-resolution models of feature-based solids, which represent an object at many levels of feature detail, are increasing for engineering purposes, such as analysis, network-based collaborative design, virtual prototyping and manufacturing. To provide multi-resolution models for various applications, it is essential to generate adequate solid models at varying levels of detail (LOD) after feature rearrangement, based on the LOD criteria. However, the non-commutative property of the union and subtraction Boolean operations is a severe obstacle to arbitrary feature rearrangement. To solve this problem we propose history-based Boolean operations that satisfy the commutative law between union and subtraction operations by considering the history of the Boolean operations. Because these operations guarantee the same resulting shape as the original and reasonable shapes at the intermediate LODs for an arbitrary rearrangement of its features, various LOD criteria can be applied for multi-resolution modeling in different applications.