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— Part I : Theory of History-Based Boolean Operations —
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The requirements of multi-resolution models of feature-based solids, which represent an
object at many levels of feature detail, are increasing for engineering purposes, such as analysis,
" network-based collaborative design, virtual prototyping and manufacturing. To provide multi-
resolution models for various applications, it is essential to generate adequate solid models at
varying levels of detail (LOD) after feature rearrangement, based on the LOD criteria. However,
the non-commutative property of the union and subtraction Boolean operations is a severe
obstacle to arbitrary feature rearrangement. To solve this problem we propose history-based
Boolean operations that satisfy the commutative law between union and subtraction operations
by considering the history of the Boolean operations. Because these operations guarantee the
same resulting shape as the original and reasonable shapes at the intermediate LODs for an
arbitrary rearrangement of its features, various LOD criteria can be applied for multi-resolution
modeling in different applications.
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L. Introduction ing have in the main been polyhedral models,
) including triangles, and various polygonal sim-

In the area of computer graphics, extensive plification methods such as edge-collapse and

. . . . reex- en i
research on multi~resolution modeling and its vertex-removal have been developed to provide

models at the required level of detail (LOD). The

applications has been carried out to enable fast T ) .
applications are mainly fast rendering and trans-

display (Schréder et al., 1992; Cignoni et al.,

1998). The objects for multi-resolution model- mission of geometric models in computer gra-

phics. The objects for removal, or suppression, to
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Kookmin University, Seoul 136-702, Korea. (Manus-
cript Received June 28, 2004; Revised November 11, aches, multi-resolution modeling of the feature-

2004) based B-rep solid models has only recently been

edges, or faces.
Unlike the conventional polyhedral appro-
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studied (Choi et al., 2002 ; Koo and Lee, 2002 ;
Kim et al., 2003 ; Lee S. H. et al., 2002 ; Lee J. Y.
et al., 2002 ; Lee et al., 2004). Here, the object of
multi-resolution modeling is a solid model and
the suppressed objects are form features that are
at an even higher level of modeling entities than
the topological entities. Features are classified
into two groups: additive and subtractive fea-
tures. In the previous research, feature-based
multi-resolution modeling algorithms have been
developed based on the assumption that, as illu-
strated in Fig. 1, the model at the lowest resolu-
tion is constructed by uniting all the additive
features and the models at higher resolutions are
generated by applying subtractive features in des-
cending order of volume. Therefore, if the features
are rearranged in arbitrary order, previous re-
search methods do not necessarily result in the
same shape as the original solid model.
However, to apply multi-resolution modeling
techniques to various applications, it is essenti-
al to include additive features for intermediate
LOD models. A severe obstacle for this task is
the non-commutative property of the union and
subtraction Boolean operations. To solve this pro-
blem we propose history-based Boolean opera-
tions, based on the merge-and-select algorithm
(Crocker and Reinke, 1991 ; Masuda 1992 ; Kim
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(b) Rearranged subtractive features according to their

volume
Fig. 1 An example of feature-based multi-resolu-
tion modeling proposed by Choi et al. (2002)

et al, 1996). Unlike the conventional Boolean
operations, they satisfy the commutative law for
union and subtraction operations by consider-
ing the history of Boolean operations. Therefore,
these operations guarantee the same resultant
shape as the original and reasonable shapes at
intermediate LODs for an arbitrary rearrange-
ment of features. As a result, various LOD criteria
can be applied for multi-resolution modeling in
different applications.

The remainder of the paper is organized as
follows. Section 2 defines the problem. Section 3
introduces the definition of history-based Boo-
lean operations. Section 4 discusses the commuta-
tive property of history-based Boolean opera-
tions. Section 5 introduces the adaptation of the
history-based Boolean operations for more ac-
ceptable intermediate LOD models. Section 6
presents our conclusions.

2. Problem Definition

Feature-based modelers use a modeling meth-
od in which a feature is a basic modeling unit,
and an object is modeled by adding features in-
crementally to a basic shape feature (Shah, 1995 ;
Lee, 1999). According to Part 48 of STEP, form
features are classified into three basic types:
volume, transition, and pattern features (Dunn,
1992).
decrement, to the volume of a shape, such as a

A volume feature is an increment, or

hole or a boss. A transition feature separates or
blends surfaces, such as fillets or chamfers. A
feature pattern is a set of similar features in a

F3
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o
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Fig. 2 A feature modeling tree
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Fig. 3 Reordering of the Boolean operations

{PO, P1, P2, P3)

Po

Fo

Fig. 4 A CSG tree of the history-based Boolean
operations for the example shown in Fig. 2

regular geometric arrangement, such as circles or
array patterns.

A part-modeling procedure can be represented
by a feature-modeling tree as shown in Fig. 2.
In this tree, the leaf nodes represent the primi-
tives of the features, and the intermediate nodes
represent the Boolean operations, which contain
either a union or subtraction operation. To build
the tree, it is necessary to convert transition and
pattern features into volume features, and to re-
classify them as additive or subtractive.

For multi-resolution modeling, the features
need to be rearranged in proportion to the signif-
icance of the feature. However, if features are

rearranged, the resulting shape can be different
from the original, because mixed Boolean opera-
tions of union and subtraction do not obey a
commutative law. For example, if the features in
Fig. 2 are rearranged to Fo— Fy— F3— F3, as
shown in Fig. 3(a), the result differs from the
original shown in Fig. 2. Fig. 3(b) represents
what it should be: the highest LOD model must
be the same shape as the original in spite of an
arbitrary rearrangement of features, and the in-
termediate LOD models must have reasonable
shapes.

3. Definition of History-Based
Boolean Operations

When the order of Boolean operations is chang-
ed, the region affected by each Boolean opera-
tion in the initial order can be different from that
in the rearranged order. This makes the union
and subtraction operations non-commutative.
Our idea is to utilize the modeling history to
make these operations commutative. The primi-
tives used in each operation are first stored and
then used to provide the same result after the
reordering of the Boolean operations. In this pa-
per, the Boolean operations that obey the commu-
tative law between union and subtraction opera-
tions by using the modeling history are called
history-based Boolean operations, and the primi-
tives stored with each operation are called affec-
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ting primitives. Note that intersection operations
are not included in the history-based Boolean
operations because feature-based modeling is
implemented using only union and subtraction
operations. The formal definition of the history-
based Boolean operation is as follows.

[Definition 1] History-based Boolean opera-
tions

Let U, P, and @ denote the sets of primitives
as follows: U is a set of all primitives that par-
ticipate in the Boolean operations for modeling
a part; P is a subset of U that includes the
primitives in the child nodes of a given operation
node; and @ is a subset of U/ such that Q=
U—P, that is Q={Q:| Q:EPAQ;EU} where
Q: denotes a primitive in @. That is,  is a set
of the primitives used in the subsequent Boo-
lean operations, whereas P is a set of the primi-
tives used in the previous Boolean operations.
Then, if the history-based union and subtraction
Boolean operations, which are denoted by U}
and —} respectively, are defined as

AU;B=AU(B—L1JQ1-) (1
A-3B=A-(B-UQ) @

where U @); represents the union of all the primi-
i

tives @; in Q.

Egs. (1) and (2) also can be written as
AURB={x|x€AV xEBAxEQ)} (3)
A—}B={x|x€AV—(xEBA2£Q)} (4)

where V, A, and — symbolize ‘and’, ‘or’, and
‘not’ respectively, and x denotes a point in the
3-D Euclidian space. Fig. 4 illustrates the CSG
tree of the history-based Boolean operations for
the example in Fig. 2. Here, { P;} represents the
set Pthat consists of the primitives of the previous
Boolean operations.

4. Commutative Property of History-
Based Boolean Operations

If two operations are selected from union
and subtraction, there are four combinations : U
and U, —, and —, U and —, and — and U. In

the following sections, the commutative property
of history-based Boolean operations is investi-
gated for three cases: two unions, two subtrac-
tions, and a union and a subtraction. The proof
of each equation is described in detail in the
Appendix.

4.1 Commutative property of history-based
union operations

It is well known that union operations are com-
mutative: AUBUC=AUCUB (Lin, 1974).
We investigate whether history-based union
operations are also commutative. The modeling
process AUBUC is represented by AUfys
BU {45, C in history-based Boolean operations.
From Eq. (1) and the laws of Boolean algebra
(Lin, 1974),

A U(*A,B}B U EkA,B,C}czA U (B— C) U (C)

=AUBUC 5)
AUfuaCUtmB=AUCU(B=C)
=AUBUC

As AUtnBUlsaC=AU{1soCUfsB his-
tory-based union operations are commutative.
The detailed derivation is given in the Appendix.

4.2 Commutative property of history-based
subtraction operations

It is also known that subtraction operations
A—B—C=A-C—B. In
history-based Boolean operations, the modeling
process A—B—C is represented by A—{in
B—}5¢C. From Eq. (1) and the laws of
Boolean algebra,

A—tanB—{a5aC=A—(B—C)-C

are commutative :

—A-B-C ™
A~tanoC—liB=A-C—(B=C) ¢
—A-B-C

Because A—{unB—{150C=A—{1450C—{anB,
history-based subtraction operations are com-
mutative.

4.3 Commutative property of history-based
union and subtraction operations

First, consider the case of AUB—C. In con

ventional Boolean operations, the resultant shape
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B B

A0B - C g4-CuB
Fig. 5 Venn diagrams of AUB—Cand A—CUB

A B..C 4o C B
Fig. 6 Venn diagrams of A—BUC and AUC—B

of AUB—C is different from that of A~ CUB
as shown in Fig. 5. However, in history-based
Boolean operations

AUfnB—{apaC=AU(B-C)—C (9)
=AUB-C
A_(*A,B,C}C rA,B)BZA‘CU(B—‘C) (10)
=AUB-C
Egs. (9) and (10) show that the reordered his-
tory-based Boolean operations provide the same
result as the original.

Next, consider the case of A—BUC. As illu-
strated in Fig. 6, for conventional Boolean opera-
tions, the resultant shape of A—BU C is different
from that of AU C—B. However, for history-
based Boolean operations,

A—tanBUfsaC=A—(B-C)UC (11)
=A-BUC
AUlsaC—fanB=AUC—(B—C) (12)
=A—-BUC
Eq. (12) shows that the result of reordering the
history-based Boolean operations is the same as
the original.

From the results in the two cases AUB—C
and A—BUC, it follows that mixed history-
based Boolean operations of union and subtrac-
tion are commutative.

5. Extension of Affecting
Primitives

Although history-based Boolean operations
guarantee the same resultant shape for an arbitra-
ry reordering of the operations, solid models at
the intermediate LODs may have unnatural
shapes. For example, if the Boolean sequence in
Fig. 2 is reordered to Fy— IF1— F3— F3, the
intermediate LOD models will be as shown in
Fig. 7. For each Boolean operation, the volume
originating only from the affecting primitives of
the operation is used as a tool body. For example,
in the first subtraction operation Phy—{r, ry P,
the volume overlapping P and P is excluded
from P,. However, in this case, an undesirable
detailed shape appears at the LOD=1. This shape
should be eliminated to provide a more natural
LOD model. Consequently, in order for the his-
tory-based Boolean operation to be applicable
to feature-based multi-resolution modeling, it is
essential to develop an algorithm to provide more
reasonable solid models at intermediate LODs.

These unacceptable intermediate LOD models
originate from the algorithm that excludes in
advance the region overlapping with primitives
used by subsequent Boolean operations. To pre-
vent this, we extend the range of affecting primi-
tives without violating the commutative laws of
history-based Boolean operations. The affecting
primitive list of a Boolean operation includes the
tool bodies of the following Boolean operations.
Although these primitives are included in the
affecting primitive list, the final shape is not
changed because the region overlapping with
these primitives will be modified later by their
corresponding Boolean operations. For example,
by adding P and P to the affecting primitive
list of the first subtraction operation in the CSG
tree in Fig. 7, the first LOD model has a more
reasonable shape as shown in Fig. 8. Naturally,
the highest LOD model has the same shape as
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Fig. 7 A CSG tree for the rearranged history-based Boolean operations for the example shownin Fig. 3

Fo Fi

Fig. 8 Extension of affecting primitives for the example shown in Fig. 7

the original. A sequence of history-based Boolean
operations gives exactly the same result as the
conventional Boolean operations ordered in the
original sequence. For example, if the initial
modeling is B—P U B—PB,, then B,—*B=F,—
B, Bh—"PR—*P=R—P—P, Rh—"PRBU*R—
*P=F— P,UP,— P, etc. Consequently, the his-
tory-based Boolean operations have the effect of
rearranging the reordered operations to be in the
initial order.

6. Conclusion

We propose history-based Boolean operations
that satisfy the commutative laws for union and

subtraction operations, and have developed an
algorithm for multi-resolution modeling based on
the non-manifold merged set and history-based
Boolean operations. This algorithm guarantees
the same resultant shape and reasonable interme-
diate LOD models for an arbitrary rearrangement
of the features, consistent with a certain LOD
criterion, such as the volume of the feature, re-
gardless of whether the feature is subtractive or
additive.

As future work, the challenge is to extend the
multi-resolution modeling technique to multi-
abstraction modeling that can provide geometric
models at various levels of abstraction for engi-
neering analysis. To accomplish this goal, it is
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necessary to extend the representation domain of
history-based Boolean operations from solid to
non~manifold models.
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Appendix

The detailed proofs of Eq.(5) to (12) are
described in this section. If A€ denotes the
complement of A, the laws of Boolean algebra are
summarized into Table 1. The subtraction opera-
tion can be represented by (Lin, 1974)

A—B=ANB° (13)
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Table 1 Laws (axioms) of boolean algebra

Name Axiom Dual
Idempotent AUA=A ANA=A
Identit AUg=A ANU=A
y AUU=U ANg=¢
Complement AUA®=U AUA®=¢
p (A9 =4 (A9 ¢=A
Commutative] AUA=BUA ANB=BNA
Associative (AuBuC (AnB)NC
=AU (BUC) =ANBNC)
Distributive AN(BUC) AU(BNC)
=(ANB)U(ANC) | =(AUB)N(AUC)
De Morgan’s| (AUB)°=A°NB° | (ANB)°=A°UB®
Absorption AU(ANB)=B AN(AUB)=A
PEO™ | AU(A°NB)=AUB|AN(A°UB)=ANB

A.1 Proof of Eq. (5):
A U?A,B)BU{‘;),B,C}C:AUBU C
AU(‘A,B)BU 'A,B C)C

=AU

=AU(B
BNCHUC)

(
{

=AU((BUC)N

(B-
(
=AU(
{
(

Ou(o)
ncyuc

(ccu)

=AU((BUCINT)
=AU(BUC)
=AUBUC

A2 Proof of Eq. (6):

AUl aCUlnB=AUBUC
AU{‘A,B,C)CU{;,E}B

=(AUC)U(B-C)

il

I}

(AUC)

((AUC)UBIN((AUCIUCE)
((AUB)UC)
(
(

(AUBUC)

U(BNC®)

n((Auc)uce)

(AUBUC)N(AU(CUCY)

N(AUD))

=(AUBUCINU
=AUBUC

A3 Proof of Eq. (7):

A

A~{unB={is0C

=A- (B~

a-¢

(Eq. (1) and Eq. (2))
(Eq. (13))
(associative law)
(distributive law)
(complement law)
(identity law)
(associative law)

Eq. (1) and Eq. {2))
- (13))

distributive law)

associative law)

(
(Eq
(
(commutative law)
{
(complement law)
(

identity law)

—(*A,B}B_{*A,B.C}C:A_B_ C

(Eq. (1) and Eq. (2))

Il

Il

A4

A #

1]

(An(BNCYHNCe
(AN(BCUC) NCE
({AnBYUANC)NCE
((ANBYNCHU

((AnBNCHY

((ANBYNCHU(ANG)
({ )NCEY U4

ANBINCE

A-B-C

Proof of Eq. (8):
A~ C—
5.0C—nB
C)-(B-C)
AnCoNBNCY*
ANCYHN(BUC)

)
(ANC)NBYUAN(CNC))
)

)
(ANCYNB) J(ANg)
(ANCINB*) J¢

ANBNCE

=A-B-C

AS

=(AUB)N

Proof of Eq. (9):

(
(
(
{(ANCHNBYU(ANCY NC) (distributive law)
(
(
(
=(

-(13))
De Morgan’s law)
distributive law)

((ANC) NCY) (distributive law)
JIAN(CNCY)

complement law)
identity law)

(Eq

(

(

(

(associative law)
(

(

(Eq.(13))

{A,B)BzA""B’_ C

Eq. (1) and Eq. (2))

A13)
De Morgan’s law)

complement aw)
identity law)
commutative law)

(

(Eq

{

(

(associative law)
{

(

(

(Eq. (13))

A U{A,B}B "(*A.B,C)C=A U B— C

AUlnB—{as.0C
=AU(B-C)-(()
=AUBNCNCE

{aucance

=(AUBN((AUC)NCY)
=(AUB)NC*
=AUB-C

A.6

=(ANCHU

Il

Il

Proof of Eq. (10):

Eq. (1) and Eq. (2))
(13))

distributive law)

absorption law)

- (13)

(
(Eq
(
(associative law)
(
(Eq

A —{*A,B,C)C U {*A,B}B:A U B— C
A"&,B,C)CU('A,B;B

A-CU(B-()
(BNCY)

Eq. (1) and Eq. (2))
- (13))

(ANCHUB)N({ANCE) UCE) (distributive law)

(
((AncyuBInce

((AUB)n(CUB)NCE
(AUBIN((CUBINCY)

=(AUB)NC*

AUB-C

(
(Eq
(
(absorption law)
(distributive law)
(associative law)
(
(Eq

absorption law)

-(13)
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A.7 Proof of Eq. (11):
A‘{*A,B)BU(*A.B,C}C:A—BU C

A~linBUlsaC
=A~(B-C)UC
=AN(BNC°UC
=AN(B*UCO)UC
=(ANBYU(ANCIUC
=(ANBYUHANOUC)
=(ANBYUC
=A-BUC

A8 Proof of Eq. (12):
AUfsaC—{anB=A—BUC

AUlsaC—{unB

Eq. (1) and Eq. (2)) =AUC—{(B-()
S(13) =(AUC)N(BNCE)®
De Morgan’s law) =(AUC)N(BUC)
=(ANBYUC

associative law) =A-BUC
absorption law)

(

(Eq

{

(distributive law)
(

{

(Eq. (13))

(Eq. (1) and Eq. (2))
(Eq. (13))
(DeMorgan’s law)
(distributive law)
(Eq

13)



