• Title/Summary/Keyword: Virgin Material

Search Result 97, Processing Time 0.027 seconds

The Fluidity of the Recycled Thermoplastic Elastomer on the Injection Molding Process (사출성형공정에서 엘라스토머 재생재의 유동성)

  • No, B.S.;Han, S.R.;Jeong, Y.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.271-275
    • /
    • 2007
  • These days, recycling of plastic material has become a major issue due to the landfills and environmental problem. This study investigates the fluidity of thermoplastic vulcanizate(TPV), which can be used for an automobile part such as a weather strip, in order to replace ethylene propylene rubber(EPDM). Injection molding experiments with the spiral flow test mold and panel cover mold are conducted to examine the fluidity of TPV during injection molding. It is found out that the recycled TPV's flow length is a little bit longer than the virgin TPV. However, the filling weight for a panel cover parts by a recycled TPV is almost the same as that by a virgin TPV.

A Study on Material Degradation Evaluation of 9Cr1MoVNb Steel by Micromechanics Test Method (미소역학 시험기법에 의한 9Cr1MoVNb강의 열화도 평가)

  • Baek, Seung-Se;Na, Sung-Hoon;Yoo, Hyun-Chul;Lee, Song-In;Ahn, Haeng-Gun;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.105-110
    • /
    • 2000
  • The Micromechanics test is new test method which uses comparatively smaller specimen than that required in conventional material tests. There are several methods, such as small-specimen creep test, the continuous indentation test, and small punch(SP) test. Among them, the small punch(SP) test method has been applied to many evaluation fields, such as a ductile-brittle transition temperature, stress corrosion cracking, hydrogen embrittlement, and fracture properties of advanced materials like FGM or MMC. In this study, the small punch(SP) test is performed to evaluate the mechanical properties at high/low temperature from $-196^{\circ}C$ to $650^{\circ}C$ and the material degradation for virgin and aged materials of 9Cr1MoVNb steel which has been recently developed. The ${\Delta}P/{\Delta}{\delta}$ parameter defined a slope in plastic membrane stretching region of SP load-displacement curve decreases according to the increase of specimen temperature, and that of aged materials is higher than the virgin material in all test temperatures. And the material degradation degrees of aged materials with $630^{\circ}C$ -500hrs and $630^{\circ}C$ -1000hrs are $36^{\circ}C$ and $38^{\circ}C$ respectively. These behaviors are good consistent with the results of hardness($H_v$) and maximum displacement(${\delta}_{max}$).

  • PDF

DISCRIMINATION BETWEEN VIRGIN OLIVE OILS FROM CRETE AND THE PELOPONESE USING NEAR INFRARED TRANSFLECTANCE SPECTROSCOPY

  • Flynn, Stephen J.;Downey, Gerard
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1520-1520
    • /
    • 2001
  • Food adulteration is a serious consumer fraud and a potentially dangerous practice. Regulatory authorities and food processors require a rapid, non-destructive test to accurately confirm authenticity in a range of food products and raw materials. Olive oil is prime target for adulteration either on the basis of the processing treatments used for its extraction (extra virgin vs virgin vs ordinary oil) or its geographical origin (e.g. Greek vs Italian vs Spanish). As part of an investigation into this problem, some preliminary work focused on the ability of near infrared spectroscopy to discriminate between virgin olive oils from separate regions of the Mediterranean i. e. Crete and the Peloponese. A total of 46 oils were collected: 18 originated in Crete and 28 in the Peloponese. Oils were stored in a temperature-controlled room at 2$0^{\circ}C$ prior to spectral collection at room temperature (15-18$^{\circ}C$). Samples (approximately 0.5$m\ell$) were placed in the centre of the quartz window in a camlock reflectance cell; the gold-plated baking plate was then gently placed into the cell against the glass so as to minimize the formation of air bubbles. The rear of the camlock cell was then screwed into place producing a sample thickness of 0.5mm. Spectra were recorded between 400 and 2498nm at 2nm intervals on a NIR Systems 6500 scanning monochromator. Spectral collection took place over 2-3 days. Data were analysed using both WINISI and The Unscrambler software to investigate the possibility of discriminating between the oils from Crete and the Peloponese. A number of data pre-treatments were used and discriminant models were developed using discriminant PLS (WINISI & Unscrambler) and SIMCA (Unscrambler). Despite the small number of samples involved, a satisfactory discrimination between these two oil types was achieved. Graphical examination of principal component scores for each oil type also holds out the possibility of separating oils from either Crete and the Peloponese on the basis of districts within each region. These preliminary data suggest the potential of near infrared spectroscopy to act as a screening technique for the confirmation of geographic origin of extra virgin olive oils. The sample presentation strategy adopted uses only small volumes of material and produces high quality spectra.

  • PDF

Life Evaluation of Nano-Composites According to the Addition of MgO (산화마그네슘 첨가에 따른 나노컴퍼지트의 수명평가)

  • Shin, Jong-Yeol;Jeong, In-Bum;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.390-395
    • /
    • 2015
  • Molded insulation materials are widely used from large electric power transformer apparatus to small electrical machinery and apparatus. In this study, by adding MgO with the average particle of several tens nm and the excellent thermal conductivity into molding material, we improved the problem of insulation breakdown strength decrease according to rising temperature in overload or in bad environmental condition. We confirmed the life evaluation by using the insulation breakdown and inverse involution to investigate the electrical characteristics of nano-composites materials. By using a scanning electron microscope, it is confirmed that MgO power with the average particle size of several tens nm is distributed and the filler particles is uniformly distributed in the cross section of specimens. And it is confirmed that the insulation breakdown strength of Virgin specimens is rapidly decreased at the high temperature area. But it is confirmed that the insulation breakdown strength of specimens added MgO slow decreased by thermal properties in the high temperature area improved by the contribution of the heat radiation of MgO and the suppression of tree. The results of life prediction using inverse involution, it is confirmed that the life of nano-composites is improved by contribution of MgO according to the predicted insulation breakdown strength after 10 years of specimens added 5.0 wt% of MgO is increased about 2.9 times at RT, and 4.9 times at $100^{\circ}C$ than Virgin specimen, respectively.

High Temperature Creep Characteristics Evaluation for Degraded Heat Resistance Steel of Power Plant by Mini-Specimen (미소시험편에 의한 재질열화된 내열강의 고온 크리프 특성 평가)

  • Lyu, Dae-Young;Baek, Seung-Se;Yu, Hyo-Sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.429-435
    • /
    • 2003
  • In this study the new creep test using miniaturized specimen(10${\times}$10${\times}$0.5 ㎣) was performed to evaluate the creep characteristics for degraded materials of 2.25Cr-1Mo steel. For this creep test, the artificially aged materials for 330 hrs and 1820hrs at $630^{\circ}C$ were used. The test temperatures applied for the creep deformation of miniaturized specimens was X$630^{\circ}C$ and the applied loads were between 45 kg∼80 kg. After creep test, macro- and microscopic observation were conducted by the scanning electron microscope(SEM). The creep curves depended definitely on applied load and microstructure and showed the three stages of creep behavior like uniaxial tensile creep curves. The load exponents of virgin, 330 hrs and 1820 hrs materials based on creep rate showed 14.8, 9.5 and 8.3 at $550^{\circ}C$ respectively, The 1820 hrs material showed the lowest load exponent and this behavior was also observed in the case of load exponent based on creep rupture time. In contrast to virgin material which exhibited fined dimple fractography, a lot of carbides like net structure and voids were observed on the fractography of degraded materials.

A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M) (III) - Evaluation of Elastic-Plastic Fracture Toughness - (주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구 (III) - 탄소성 파괴인성 평가 -)

  • Gwon, Jae-Do;In, Jae-Hyeon;Park, Jung-Cheol;Choe, Seong-Jong;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2405-2412
    • /
    • 2000
  • A cast stainless steel may experience an embrittlement when it is exposed to approximately 30$0^{\circ}C$ for long period. In the present investigation, The three classes of the thermally aged CF8M specimie n are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 300, 1800 and 3600hrs. at 43$0^{\circ}C$ respectively, the specimens are quenched in water to room temperature. Load versus load line displacement curves and J-R curves are obtained using the unloading compliance method. $J_{IC}$ values are obtained following ASTM E 813-87 and ASTM E 813-81 methods. In addition to these methods, JIC values are obtained using SZW(stretch zone width) method described in JSME S 001-1981. The results of the unloading compliance method are $J_Q$=485.7 kJ/m$^2$ for virgin material, $J_{IC}$ of the degraded materials associated with 300, 1800 and 3600hrs are obtained 369.25 kJ/m$^2$, 311.02 kJ/m$^2$, 276.7 kJ/m$^2$, respectively. The results of SZW method are similar to those of the unloading compliance method. Through the elastic-plastic fracture toughness test, it is found that the value of $J_{IC}$ is decreased with increasing of the aging time. The results obtained through the investigation can provide reference data for a leak before break(LBB) of reactor coolant system of nuclear power plants.

A Simulation for Kaolin Contaminants Accumulation and Varying Characteristics of Leakage Currents (Kaolin 오손물 누적량 모의실험 및 누설전류변화 특성)

  • ark, Jae-.Jun;Song, Il-keun;Lee, Jae-bong;Chun, Sung-nam
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.11
    • /
    • pp.483-489
    • /
    • 2005
  • This study performs a simulation for an accumulation mechanism of contaminants, which were produced in an industrial belt of inland, on the surface of insulators. From the simulation, silicon insulators presented higher accumulation than that of EPDM(Ethylene Propylene Diene Terpolymer : EPDM) insulators on the same distance in the case of the Virgin polymer insulator, and this result presented the same result in the insulator applied in actual fields. In the case of the accumulation test for the Virgin insulator and insulators used in actual fields, it is evident that the Virgin insulator presented more accumulation than that of the insulator used in actual fields. The results can be caused by the generation of LMW (Low Molecular Weight) on the external material of polymer insulators, and the level of the accumulation can be changed according to the degree of the continuous generation of LMW. In order to simulate a certain pollution of an industrial belt, which is located along the coastline, leakage currents were measured by applying the contaminant compulsively that was produced with salts and Kaolin according to the ratio of its weight on the surface of insulators. The more increase in the content of Kaolin pollution, the level of leakage currents on the surface of polymer insulator more increased. In addition, the approaching time to the maximum value of leakage currents presented a nearly constant level regardless of the content of Kaolin. The level of leakage currents significantly decreased according to the passage of time, and the level of leakage currents on the surface maintained a constant level at a specific time regardless of the content of Kaolin.

Drawing Behavior and Characterization of Recycled Polyester Yarn (재활용 폴리에스터 원사의 연신거동 및 특성분석)

  • Jungeon Lee;Tae Young Kim;Jae Min Park;Eun A Bae;Young Hun Kim;Jae Hoon, Jung;Youngkwon Kim;Jeong Hyun Yeum
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.169-178
    • /
    • 2023
  • The extended use of polyester nowadays has increased the amount of waste polyester (PET) released into the environment. Although these materials don't directly harm living things or the ecosystem, their inability to biodegrade remains one of the major global threats, driving up the amount of solid waste made up of PET. Environmental concerns have approved an increasing interest in recycled PET however the production of recycled PET with sufficient mechanical properties is still a challenge. Recycled Polyester (rPET) yarns are inexpensive and have the potential to acquire better mechanical characteristics through physical treatments, particularly by using technically simple method like uniaxial drawing. This study inspected the drawn behavior of virgin PET yarns and rPET yarns under various drawing parameters by first analyzing the initial material characteristics of both yarn. The impact of stretching on mechanical and morphological properties was also investigated. The results showed that virgin PET has better properties than rPET yarn; however, mechanical properties resembling virgin PET are achieved after optimizing the draw ratio.

A Study on Bursting Properties of Short-Fiber Reinforced Chloroprene Rubber (단섬유 강화고무의 파열특성 연구)

  • Ryu Sang-Ryeoul;Lee Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.543-549
    • /
    • 2006
  • The bursting properties under various conditions were investigated to ascertain the optimum conditions to yield the best properties. Fiber aspect ratio (AR: length of fiber/diameter of fiber), interphase condition and fiber content were considered as variables which impact the bursting pressure, bulge constant, torsional rigidity ratio. The bursting pressure of reinforced rubber increases up to 8.73 times compared to the virgin material. The better interphase condition shows the higher bursting pressure at given AR and fiber content. The bulge constant and torsional rigidity highly decrease with increasing AR and better interphase condition at same fiber content. The bulge constant and torsional rigidity reveal the minimum of 11% and 0.6% of the matrix, respectively. The bursted shape after test shows the different patterns between unfilled and reinforced rubbers. The case of virgin rubber shows a radiating shape while that of reinforced rubber shows a fluctuating straight line. Overall, it was found that the fiber AR and interphase condition have an important effect on bursting properties.

Studies on Deinking Properties of Recovered Paper for Manufacturing Eco-friendly Thermal Recording Paper (친환경 감열기록지 생산을 위한 순환제지자원의 탈묵 특성 연구)

  • Lee, Tai Ju;Choi, Do Chim;Kim, Moon Sung;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.98-105
    • /
    • 2015
  • Demands of thermal recording paper have been increased significantly by increase in usage of invoice, fax, and label. Thermal recording paper was mainly made based on virgin fiber. It is necessary to find a suitable alternative to virgin fiber in terms of environment protectional resources conservation. In this paper, deinking properties of different recovered papers were analyzed in order to use the recovered paper as raw material of thermal recording paper. Recovered paper were ONP, OMG and white ledger. Flotation reject of OMG was high because inorganic pigments in coating layer could be removed by upstream of froth. Brightness of white ledger and OMG were much higher than that of ONP. Therefore, properties of pulp made from the recovered paper could be enhanced with increase in blending ratio of white ledger and OMG. However, blending ratio of OMG caused the increase of flotation reject. Consequently, the optimum blending ratio of ONP, OMG, and white ledger was 3:3:3 for eco-friendly thermal recording paper. Under the condition, brightness was about 70% and ERIC was below 300 ppm.