• Title/Summary/Keyword: Viral proteins

Search Result 273, Processing Time 0.02 seconds

Superinfection exclusion of BVDV occurs not only at the level of structural protein -dispensable viral replication but also at the level of structural protein -required viral entry

  • Lee Y.-M.;Frolov I.;Rice C.M.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.66-77
    • /
    • 2000
  • For a variety of viruses, the primary virus infection has been shown to prevent superinfection with a homologous secondary virus; however, the mechanism of exclusion has not been clearly understood. In this work, we demonstrated that BVDV -infected MDBK cells were protected from superinfection with a homologous superinfecting BVDV, one of the positive-sense RNA pestiviruses, but not with an unrelated rhabdovirus, such as vesicular stomatitis virus. Once superinfection exclusion was established by a primary infection with BVDV, the transfected infectious BVD viral RNA genome was shown to be competent for viral translation, but not viral replication. In addition, our results also demonstrated that upon superinfection, the. viral RNA genome of viral particles was not transferred into the cytoplasm of BVDV -infected cells. Using newly developed system involving rapid generation of the MDBK cells expressing BVD viral proteins, we subsequently found that expression of the viral structural proteins was dispensable for the block occurring at the level of viral RNA replication, but required for the exclusion at the level of viral entry step. Altogether, these findings provide evidence that the superinfection exclusion of BVDV occurs not only at the level of viral replication in which the viral replicase are involved, but also at the level of viral entry with which the viral structural proteins are associated, and that a cellular factor(s) play an essential role in this process.

  • PDF

Stability of Retroviral Vectors Against Ultracentrifugation Is Determined by the Viral Internal Core and Envelope Proteins Used for Pseudotyping

  • Kim, Soo-hyun;Lim, Kwang-il
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.339-345
    • /
    • 2017
  • Retroviral and lentiviral vectors are mostly pseudotyped and often purified and concentrated via ultracentrifugation. In this study, we quantified and compared the stabilities of retroviral [murine leukemia virus (MLV)-based] and lentiviral [human immunodeficiency virus (HIV)-1-based] vectors pseudotyped with relatively mechanically stable envelope proteins, vesicular stomatitis virus glycoproteins (VSVGs), and the influenza virus WSN strain envelope proteins against ultracentrifugation. Lentiviral genomic and functional particles were more stable than the corresponding retroviral particles against ultracentrifugation when pseudotyped with VSVGs. However, both retroviral and lentiviral particles were unstable when pseudotyped with the influenza virus WSN strain envelope proteins. Therefore, the stabilities of pseudotyped retroviral and lentiviral vectors against ultracentrifugation process are a function of not only the type of envelope proteins, but also the type of viral internal core (MLV or HIV-1 core). In addition, the fraction of functional viral particles among genomic viral particles greatly varied at times during packaging, depending on the type of envelope proteins used for pseudotyping and the viral internal core.

Effect of Chemical Carcinogens on the Replication, Cytolyticity, DNA Synthesis, and Protein Expression of Herpes Simplex Virus in Viral Infected Cells (발암성 화학물질들이 Herpes Simplex Virus의 복제, 세포융해, DNA 합성 및 단백질 합성에 미치는 효과)

  • Chun, Yeon-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.213-222
    • /
    • 1992
  • We investigated effects of several chemical carcinogens, i.e., $benzo({\alpha})pyrene$ (BP),7,12-dimethylbenz(a)anthracene (DMBA), nitrosomethyl urea (NMU), and nicotine on the replication, cytolyticity, DNA synthesis, and protein synthesis of type 1 herpes simplex virus (HSV-1) in viral infected Vero cell monolayers. We observed that the BP and DMBA did not show such activity. All chemical carcinogens did not inhibit the synthesis of viral DNA, but the expression of gamma viral proteins that are expressed from the newly synthesized progeny viral DNA was somewhat notably inhibited by BP and DMBA. However, the synthesis of alpha and beta viral proteins was not altered by the chemical carcinogens. These data indicate that the gamma viral proteins expressed from the newly synthesized DNA in the presence of chemical carcinogens in the culture medium may be defective. This is further supported by the fact that the virus fail to replicate in the presence of these chemical carcinogens, in spite of viral DNA and proteins are somewhat normally synthesized.

  • PDF

Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins

  • You, Jaehwan;Seok, Jong Hyeon;Joo, Myungsoo;Bae, Joon-Yong;Kim, Jin Il;Park, Man-Seong;Kim, Kisoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.249-262
    • /
    • 2021
  • The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.

Prophylactic and Therapeutic Applications of Genetic Materials Carrying Viral Apoptotic Function

  • Yang Joo-Sung
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.118-120
    • /
    • 2002
  • Genetic materials including DNA plasmid are effective delivery vehicle to express interesting gene efficiently and safely not to generate replication competent virus. Moreover, it has advantages to design a better vector and to simplify manufacturing and storage condition. To understand a possible pathogenic mechanism by a flavivirus, West Nile virus (WNV), WNV genome sequence was aligned to other pathogenic viral genome. Interestingly, WNV capsid (Cp) amino acid sequence has some homology to HIV-l Vpr protein. These proteins induce apoptosis in human cell lines as well as in vivo and cell cycle arrest. Therefore, DNA plasmid carrying apoptosis-inducing and cell cycle arresting viral proteins including a HIV-1 Vpr and a WNV Cp protein can be useful for anti-cancer therapeutic applications. This WNV Cp protein is an early expressed protein which can be a reasonable target antigen (Ag) for vaccine design. Immunization of a DNA construct encoding WNV Cp protein induces a strong Ag-specific humoral and Th1-type immune responses in animal. Therefore, DNA plasmid encoding apoptotic viral proteins can be useful tool for therapeutic and prophylactic applications.

  • PDF

Monoclonal antibodies against structural proteins of bovine viral diarrhea virus (소 설사병 바이러스 구조단백에 대한 단크론항체 성상에 대한 연구)

  • Kweon, Chang-hee;Zee, Yuan Chun;Woo, Hee-jong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 1992
  • Monoclonal antibodies against structural proteins of bovine viral diarrhea virus(BVDV) were derived by classical hybridoma techniques. These antibodies were characterized by serum neutralization, immunoblotting and immunoprecipitation. The neutralizing monoclonal antibody reacted with the 56kd to 54kd(M.W.) viral protein in western blotting and immunoprecipitation analysis. Although there was no neutralizing activity, another monoclanal antibody reacted with the 45kd protein by immunoprecipitation and with both the 45kd and 36kd proteins in immunoblotting analysis. respectively. Densitometer scanning of purified BVDV and the immunopreipitation of whole virus particles with neutralizing monoclonal antibody revealed the presence of more than twelve viral polypeptides. Although no possible precursor form of protein was identified with the neutralizing monoclonal antibody. the presence of intact virion was detected in the infected cell supernatant immediatelty after pulse labeling, indicating rapid translational processing as well as packaging of the virus. The partial peptide mapping of 45kd and 36kd proteins with Staphylococcus aureus V 8 protease showed that these two proteins are related.

  • PDF

Interaction Study of Soybean mosaic virus Proteins with Soybean Proteins using the Yeast-Two Hybrid System

  • Seo, Jang-Kyun;Hwang, Sung-Hyun;Kang, Sung-Hwan;Choi, Hong-Soo;Lee, Su-Heon;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • Interactions between viral proteins and host proteins are essential for virus replication. Especially, translation of viral genes completely depends on the host machinery. In potyviruses, interactions of genome-linked viral protein (VPg) with host translation factors including eIF4E, eIF(iso)4E, and poly(A)-binding protein (PABP) has previously been characterized. In this study, we investigated interactions between Soybean mosaic virus (SMV) viral proteins and host translation factors by yeast two-hybrid system. SMV VPg interacted with eIF4E, eIF(iso)4E, and PABP in yeast two-hybrid system, while SMV helper component proteinase (HC-pro) interacted with neither of those proteins. The interaction between SMV NIb and PABP was also detected. These results are consistent with those reported previously in other potyviruses. Interestingly, we found reproducible and specific interactions between SMV coat protein (CP) and PABP. Deletion analysis showed that the region of CP comprising amino acids 116 to 206 and the region of PABP comprising amino acids 520 to 580 are involved in CP/PABP interactions. Soybean library screening with SMV NIb by yeast two-hybrid assay also identified several soybean proteins including chlorophyll a/b binding preprotein, photo-system I-N subunit, ribulose 1,5-biphosphate carboxylase, ST-LSI protein, translation initiation factor 1, TIR-NBS type R protein, RNA binding protein, ubiquitin, and LRR protein kinase. Altogether, these results suggest that potyviral replicase may comprise a multi-protein complex with PABP, CP, and other host factors.

Host Cell-Intrinsic Antiviral Defense Induced by Type I Interferons

  • Asano, Atsushi
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • Type I Interferons (IFNs) are potent antiviral cytokines that modulate both innate immunity and adaptive immunity. Type I IFNs are immediately induced by viral infection, and stimulate production of a broad range of gene products such as double-stranded RNA-activated protein kinase (PKR), 2' 5'-oligoadenylate synthetase (OAS)/RNaseL and Mx GTPases. These proteins inhibit viral replication in host cells. Type I IFNs, in turn, lead to antiviral state at early phase of viral infection. We provide an overview of the knowledge of IFN-inducible antiviral proteins conserved in vertebrates.

  • PDF

N-Terminal Amino Acid Sequences of Receptor-Like Proteins that Bind to preS1 of HBV in HepG2 Cells

  • Lee, Dong-Gun;Liu, Ming-Zhu;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.180-182
    • /
    • 1996
  • One of the essential functions of virus surface proteins is the recognition of specific receptors on target cell membranes, and cellular receptors play an important role in viral pathogenesis. But the earliest steps of hepatitis B virus (HBV) infection, such as hepatocyte receptor interaction with the virus, are poorly understood. Previous work has suggested an important role of the preS1 region of HBV envelope protein in mediating viral binding to hepatocytes. Although hepatitis B virus (HBV) infection appears to be initiated by specific binding of virions to cell membrane structures via one or potentially several viral surface proteins, data showing the identification or isolation of the HBV receptor (s) are not yet available. The receptor-like proteins on the plasma membrane surface of HepG2 cells that bind to PreS1 were separated and identified using affinity chromatography, and the amino-terminal amino acid sequences of the receptor-like proteins were determined.

  • PDF

Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

  • Kim, Namgyu;Kim, Jinnyun;Bang, Bongjun;Kim, Inyoung;Lee, Hyun-Hee;Park, Jungwook;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.377-387
    • /
    • 2016
  • Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins-two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein-were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.