Browse > Article
http://dx.doi.org/10.5423/PPJ.FT.08.2016.0165

Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues  

Kim, Namgyu (Department of Microbiology, Pusan National University)
Kim, Jinnyun (Department of Microbiology, Pusan National University)
Bang, Bongjun (Department of Microbiology, Pusan National University)
Kim, Inyoung (Department of Microbiology, Pusan National University)
Lee, Hyun-Hee (Department of Microbiology, Pusan National University)
Park, Jungwook (Department of Microbiology, Pusan National University)
Seo, Young-Su (Department of Microbiology, Pusan National University)
Publication Information
The Plant Pathology Journal / v.32, no.5, 2016 , pp. 377-387 More about this Journal
Abstract
Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins-two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein-were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.
Keywords
defense genes; protein-protein interactions; tomato; Tomato yellow leaf curl virus; yeast-two hybrid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Matic, S., Pegoraro, M. and Noris, E. 2016. The C2 protein of Tomato yellow leaf curl Sardinia virus acts as a pathogenicity determinant and a 16-amino acid domain is responsible for inducing a hypersensitive response in plants. Virus Res. 215:12-19.   DOI
2 Moriones, E. and Navas-Castillo, J. 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71:123-134.   DOI
3 Nomura, K., Debroy, S., Lee, Y. H., Pumplin, N., Jones, J. and He, S. Y. 2006. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220-223.   DOI
4 Oh, C. S., Pedley, K. F. and Martin, G. B. 2010. Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK {alpha}. Plant Cell 22:260-272.   DOI
5 Perefarres, F., Thierry, M., Becker, N., Lefeuvre, P., Reynaud, B., Delatte, H. and Lett, J. M. 2012. Biological invasions of geminiviruses: case study of TYLCV and Bemisia tabaci in Reunion Island. Viruses 4:3665-3688.   DOI
6 Pereira, L. A., Todorova, M., Cai, X., Makaroff, C. A., Emery, R. J. and Moffatt, B. A. 2007. Methyl recycling activities are co-ordinately regulated during plant development. J. Exp. Bot. 58:1083-1098.   DOI
7 Rigden, J. E., Krake, L. R., Rezaian, M. A. and Dry, I. B. 1994. ORF C4 of Tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204:847-850.   DOI
8 Rochester, D. E., Kositratana, W. and Beachy, R. N. 1990. Systemic movement and symptom production following agroinoculation with a single DNA of Tomato yellow leaf curl geminivirus (Thailand). Virology 178:520-526.   DOI
9 Vanitharani, R., Chellappan, P. and Fauquet, C. M. 2005. Geminiviruses and RNA silencing. Trends Plant Sci. 10:144-151.   DOI
10 Seo, Y. S., Chern, M., Bartley, L. E., Han, M., Jung, K. H., Lee, I., Walia, H., Richter, T., Xu, X., Cao, P., Bai, W., Ramanan, R., Amonpant, F., Arul, L., Canlas, P. E., Ruan, R., Park, C. J., Chen, X., Hwang, S., Jeon, J. S. and Ronald, P. C. 2011. Towards establishment of a rice stress response interactome. PLoS Genet. 7:e1002020.   DOI
11 van Wezel, R., Dong, X., Blake, P., Stanley, J. and Hong, Y. 2002. Differential roles of geminivirus Rep and AC4 (C4) in the induction of necrosis in Nicotiana benthamiana. Mol. Plant Pathol. 3:461-471.   DOI
12 Wirthmueller, L., Roth, C., Banfield, M. J. and Wiermer, M. 2013. Hop-on hop-off: importin-${\alpha}$-guided tours to the nucleus in innate immune signaling. Front. Plant Sci. 4:149.
13 Choi, J., Choi, D., Lee, S., Ryu, C. M. and Hwang, I. 2011. Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci. 16:388-394.   DOI
14 Yang, X., Xie, Y., Raja, P., Li, S., Wolf, J. N., Shen, Q., Bisaro, D. M. and Zhou, X. 2011. Suppression of methylation-mediated transcriptional gene silencing by ${\beta}$C1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog. 7:e1002329.   DOI
15 Bang, B., Lee, J., Kim, S., Park, J., Nguyen, T. T. and Seo, Y. S. 2014. A rapid and efficient method for construction of an infectious clone of Tomato yellow leaf curl virus. Plant Pathol. J. 30:310-315.   DOI
16 Bang, B., Park, J., Jeon, J. S. and Seo, Y. S. 2013. Establishment and application of the yeast two-hybrid (Y2H)-based plant interactome for investigation of gene functions. J. Plant Biol. 56:367-374.   DOI
17 Bisaro, D. M. 2006. Silencing suppression by geminivirus proteins. Virology 344:158-168.   DOI
18 Both, G. W., Banerjee, A. K. and Shatkin, A. J. 1975. Methylation-dependent translation of viral messenger RNAs in vitro. Proc. Natl. Acad. Sci. U. S. A. 72:1189-1193.   DOI
19 Bruckner, A., Polge, C., Lentze, N., Auerbach, D. and Schlattner, U. 2009. Yeast two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci. 10:2763-2788.   DOI
20 Canizares, M. C., Lozano-Duran, R., Canto, T., Bejarano, E. R., Bisaro, D. M., Navas-Castillo, J. and Moriones, E. 2013. Effects of the crinivirus coat protein-interacting plant protein SAHH on post-transcriptional RNA silencing and its suppression. Mol. Plant-Microbe Interact. 26:1004-1015.   DOI
21 Cusick, M. E., Klitgord, N., Vidal, M. and Hill, D. E. 2005. Interactome: gateway into systems biology. Hum. Mol. Genet. 14:R171-R181.   DOI
22 Czosnek, H. and Laterrot, H. 1997. A worldwide survey of Tomato yellow leaf curl viruses. Arch. Virol. 142:1391-1406.   DOI
23 Dry, I. B., Rigden, J. E., Krake, L. R., Mullineaux, P. M. and Rezaian, M. A. 1993. Nucleotide sequence and genome organization of Tomato leaf curl geminivirus. J. Gen. Virol. 74:147-151.   DOI
24 Goring, D. R. and Walker, J. C. 2004. Self-rejection: a new kinase connection. Science 303:1474-1475.   DOI
25 Goyal, R. K., Fatima, T., Topuz, M., Bernadec, A., Sicher, R., Handa, A. K. and Mattoo, A. K. 2016. Pathogenesis-related protein 1b1 (PR1b1) is a major tomato fruit protein responsive to chilling temperature and upregulated in high polyamine transgenic genotypes. Front. Plant Sci. 7:901.
26 Li, X., Huang, L., Hong, Y., Zhang, Y., Liu, S., Li, D., Zhang, H. and Song, F. 2015. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress. Front. Plant Sci. 6:717.
27 Harrison, B. D., Muniyappa, V., Swanson, M. M., Roberts, I. M. and Robinson, D. J. 1991. Recognition and differentiation of seven whitefly-transmitted geminiviruses from India, and their relationships to African cassava mosaic and Thailand mung bean yellow mosaic viruses. Ann. Appl. Biol. 118:299-308.   DOI
28 Jupin, I., De Kouchkovsky, F., Jouanneau, F. and Gronenborn, B. 1994. Movement of Tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology 204:82-90.   DOI
29 Kheyr-Pour, A., Bendahmane, M., Matzeit, V., Accotto, G. P., Crespi, S. and Gronenborn, B. 1991. Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19:6763-6769.   DOI
30 Lee, H., Song, W., Kwak, H. R., Kim, J. D., Park, J., Auh, C. K., Kim, D. H., Lee, K. Y., Lee, S. and Choi, H. S. 2010. Phylogenetic analysis and inflow route of Tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Korea. Mol. Cells 30:467-476.   DOI
31 Lozano-Duran, R., Bourdais, G., He, S. Y. and Robatzek, S. 2014. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytol. 202:259-269.   DOI
32 Lozano-Duran, R. and Robatzek, S. 2015. 14-3-3 proteins in plant-pathogen interactions. Mol. Plant-Microbe Interact. 28:511-518.   DOI