• Title/Summary/Keyword: Vinyl-Greenhouse

Search Result 80, Processing Time 0.023 seconds

A Secular Change of Strength for Galvanized Steel Pipes for Vinyl Housing (비닐하우스용 아연도강관의 강도경년변화 시험(농업시설))

  • 남상운;김문기;권혁진
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.296-301
    • /
    • 2000
  • Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse farms. A secular change of yield strength for galvanized steel pipes was analyzed with the part of buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated that the small sized pipe houses of movable type is 7∼8 years and the large sized pipe houses of fixed type is 14∼15 years.

  • PDF

Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities (소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가)

  • Lee, Jaeho;Hyun, Intak;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.

Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems (온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향)

  • Jeon, Sam-Chae;Li, Chang-Su;Na, Su-Yeun;Huh, Jong-Chul;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.

PVA-based Graft Copolymer Composite Membrane Synthesized by Free-Radical Polymerization for CO2 Gas Separation (자유 라디칼 중합법을 활용한 CO2 기체분리용 PVA 기반 가지형 공중합체 복합막)

  • Park, Min Su;Kim, Jong Hak;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.268-274
    • /
    • 2021
  • One of the chronic problems in the issue of global warming is the emission of greenhouse gases. Carbon dioxide (CO2), which accounts for the highest proportion of various greenhouse gases, has been continuously researched by humans to separate it. From this point of view, a poly(vinyl alcohol) (PVA)-based copolymer with acrylic acid monomer was utilized in a gas separation membrane in this study. We employed a free radical polymerization to fabricate PVA-g-PAA (VAA) graft copolymer. It was utilized in the form of a composite membrane on a polysulfone substrate. The proper amount of acrylic acid reduced the crystallinity of PVA and increased CO2 solubility in separation membranes. In this perspective, we suggest the novel approach in CO2 separation membrane area by grafting and solution-diffusion.

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Effect of Adoption and Complementarity of Production Technology Bundles in Horticultural Greenhouse (원예시설 결합기술의 수용효과와 보완성 분석)

  • Choi, Don-Woo;Kim, Tae-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5906-5913
    • /
    • 2015
  • This paper analyzes the effect of adoption and complementarity of production technology bundles in horticultural greenhouse - more than 10m vinyl greenhouse ($T_1$), polyolefin film ($T_2$), winding branch ventilation ($T_3$), and more than 15 ounce lagging cover ($T_4$). The results are as follows: First, only using $T_1$, only using $T_2$, only using $T_3$, only using $T_4$, using $T_1$ and $T_3$, and using $T_1$ and $T_4$, have a higher net return. Second, when $T_3$ is used, $T_1$ and $T_2$ are complementary. Third, $T_1$ and $T_3$ are always complementary. Fourth, when $T_2$ and $T_3$ are not used, $T_1$ and $T_4$ are complementary. The results of this paper could contribute to government's technology diffusion policies and subsequent studies.

Analysis of the Characteristics of Peak External Pressure Coefficient Working on Roof Surface according to the Shape and Layout of Green Houses (비닐하우스의 형태와 배치에 따른 지붕면 피크외압계수 특성분석)

  • You, Ki-Pyo;Paek, Sun-Young;Kim, Young-Moom
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2010
  • Among the protected horticulture facilities in Korea, 99.2% are pipe-framed green houses and most of them are structurally vulnerable single-span type green houses. This study examined peak external pressure coefficient for the roof surface of a green house group composed of single-span and a multiple-span green houses. According to the results of the experiment, the distribution of peak external pressure coefficient was around 30% higher in the single-span greenhouse than in the multi-span ones. The external pressure coefficient for the roof surface of the vinyl house group was, in all of the three vinyl houses, was around 20%-30% higher than that for single-span greenhouses.

  • PDF

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

Varietal Variation of Grain-Filling Period under the Different Environmental Conditions in Barley (대맥의 재배환경에 따른 등숙일수의 품종간 변이)

  • Hong-Suk Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.2
    • /
    • pp.202-210
    • /
    • 1983
  • These experiments were conducted to study the relationship among agronomic traits, varietal variation of grain-filling periods and the effect of environmental conditions on the grain-filling in the ten selected barley cultivars. The varietal variation of grain-filling periods was of significance: Tokak had the similar increment in both greenhouse and field plot, Suweon two row was believed to be an cultivar with short grainfilling period. Cultivars with higher grain-filling rates tended to. have significantly lower ash content. Ash content of a cultivar tended to be lower when grown under favorable condition. At maturity, the time of development of yellow or dark pigment at the crease base could be a possible criterion for physiological maturity determination. However, this requires further study. Average grain-filling period in the different conditions was constant, but varietal differences were 9 days in the greenhouse and 5 days in the field. The grain moisture content was not constant in accordance to both cultivars and growing conditions. Average accelerated days for heading and ripening periods were very constant in comparision with field and vinyl mulching suggests that the selected materials will be useful for genetic study on grain-filling periods. The cultivars and grown conditions with higher accumulated temperature per $100^{\circ}C$ from early grain-filling had larger grain-filling rates and heavier 1000 grain weight. This study showed that if the variation among and within cultivars is to be minimized, the greenhouse and vinyl mulching plots could be useful for genetic study on grain-filling periods in $BC_1$ and $F_2$ segregation.

  • PDF