• Title/Summary/Keyword: View Axis

Search Result 352, Processing Time 0.024 seconds

Infrared Dual-field-of-view Optical System Design with Electro-Optic/Laser Common-aperture Optics

  • Jeong, Dohwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • We report a midinfrared dual-field-of-view (FOV) optical system design for an airborne electro-optical targeting system. To achieve miniaturization and weight reduction of the system, it has a common aperture and fore-optics for three different spectral wavelength bands: an electro-optic (EO) band ($0.6{\sim}0.9{\mu}m$), a midinfrared (IR) band ($3.6{\sim}4.9{\mu}m$), and a designation laser wavelength ($1.064{\mu}m$). It is free to steer the line of sight by rotating the pitch and roll axes. Our design co-aligns the roll axis, and the line of sight therefore has a fixed entrance pupil position for all optical paths, unlike previously reported dual-FOV designs, which dispenses with image coregistration that is otherwise required. The fore-optics is essentially an achromatized, collimated beam reducer for all bands. Following the fore-optics, the bands are split into the dual-FOV IR path and the EO/laser path by a beam splitter. The subsequent dual-FOV IR path design consists of a zoom lens group and a relay lens group. The IR path with the fore-optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ to $5.40^{\circ}{\times}4.32^{\circ}$), due to the insertion of two Si lenses into the zoom lens group. The IR optical system is designed in such a way that the location and f-number (f/5.3) of the cold stop internally provided by the IR detector are maintained when changing the zoom. The design also satisfies several important performance requirements, including an on-axis modulation transfer function (MTF) that exceeds 10% at the Nyquist frequency of the IR detector pitch, with distortion of less than 2%.

Introduction of Hindfoot Coronal Alignment View (후족부 관상면 배열 영상에 대한 고안)

  • Moon, Il-Bong;Jeon, Ju-Seob;Yoon, Kang-Cheol;Choi, Nam-Kil;Kim, Seung-Kook
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.225-228
    • /
    • 2006
  • Purpose: Accurate clinical evaluation of the alignment of the calcaneus relative to the tibia in the coronal plane is essential in the evaluation and treatment of hindfoot pathologic condition. Previously described standard anteroposterior, lateral, and oblique radiographic methods of the foot or ankle do not demonstrate alignment of the tibia relation to the calcaneus in the coronal plane. The purpose of this study was to introduce hindfoot coronal alignment view. Material : 1) Both feet were imaged simultaneously on an elevated, radiolucent foot stand equipment. 2) Both feet stood on a radiolucent platform with equal weight on both feet. 3) Both feet are located foot axis longitudinal perpendicular to the platform. 4) Silhouette tracing around both feet are made, and line is then drawn to bisect the silhouette of the second toe and the outline of the heel. 5) The x-ray beam is angled down approximately $15^{\circ} to $20^{\circ} Result : 1) This image described tibial axis and medial, lateral tuberosity of calcaneus. 2) Calcaneus do not rotated. 3) The view is showed by talotibial joint space. Conclusion: Although computed tomographic and magnetic resonance imaging techniques are capable of demonstrating coronal hindfoot alignment, they lack usefulness in most clinical situations because the foot is imaged in a non-weight bearing position. But hindfoot coronal alignment view is obtained for evaluating position changing of inversion, eversion of the hindfoot and varus, valgus deformity of calcaneus.

  • PDF

Evaluation of acromial spur using ultrasonography

  • Kim, Hyungsuk;Choi, Syungkyun;Park, Soo Bin;Song, Hyun Seok
    • Clinics in Shoulder and Elbow
    • /
    • v.24 no.1
    • /
    • pp.15-20
    • /
    • 2021
  • Background: The presence of an acromial spur implies a rotator cuff disorder due to impingement between the acromial spur and the rotator cuff. The purpose of the study was to observe acromial spurs using ultrasonography and to compare measurements between plain radiographs and sonograms. Methods: We retrospectively enrolled 51 consecutive patients with acromial spurs, which were interpreted on preoperative plain radiographs (supraspinatus outlet view and 30° caudal tilt) and preoperative sonograms. The ultrasonography transducer was held vertically and continuously moved laterally, which corresponded to the long axis of the long head of the biceps. The distance from the most distal margin of the original acromion to the most projected point of the acromial spur was measured. Results: No significant difference was found between the plain radiograph and ultrasonography measurements (p=0.186). A moderate to strong correlation was detected between the ultrasonography and supraspinatus outlet-view measurements (r=0.776, p=0.000). Conclusions: Anteriorly projected acromial spurs were well-visualized by ultrasonography. No discrepancy in acromial spur length was detected between the use of plain radiography (supraspinatus outlet view and 30° caudal-tilt view) and ultrasonography. The correlation coefficients between the plain radiography and ultrasonography measurements exceeded 0.7.

Perceptual Localization of a phantom sound image for Ultrahigh-Definition TV (UHD TV를 위한 가상 음상의 인지 위치)

  • Lee, Young-Woo;Kim, Sun-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.9-17
    • /
    • 2010
  • This paper presents a localization perception of a phantom sound image for ultrahigh-definition TV with respect to various loudspeaker configurations; two-horizontal, two-vertical and triplet loudspeakers. Vector base amplitude panning algorithm with modification for non-equidistant loudspeaker setup is applied to create the phantom sound image. In order to practically study the localization performance in real situation, the listening tests were conducted at the on-axis and off-axis positions of TV in normal listening room. A method of adjustment which can reduce the ambiguity of a perceived angle is exploited to evaluate the angles of octave-band signals. The subjects changed the panning angle until the real sound source and virtually panned source were coincident. A spatial blurring can be measured by examining the differences of the panning angles perceived with respect to each band. The listening tests show that the triplet panning method has better performance than vertical panning in view of perceptual localization and spatial blurring at both on-axis and off-axis positions.

Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of a Tower Stiffness (타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석)

  • Choo, Heon-Ho;Sim, Jae-Park;Oh, Min-Woo;Kim, Dong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent elastic tower is used to support the VAWT so that the effect of elastic stiffness of the tower can be considered in the present vibration experiment. Various excitation conditions with wind loads are considered and the dominant operating vibration phenomena are physically investigated in detail.

Error Compensation Algorithm for Higher Surface Accuracy of Freeform Mirrors Based On the Method of Least Squares

  • Jeong, Byeongjoon;Pak, Soojong;Kim, Sanghyuk;Lee, Kwang Jo;Chang, Seunghyuk;Kim, Geon Hee;Hyun, Sangwon;Jeon, Min Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2015
  • Off-axis reflective optical systems have attractive advantages relative to their on-axis or refractive counterparts, for example, zero chromatic aberration, no obstruction, and a wide field of view. For the efficient operation of off-axis reflective system, the surface accuracy of freeform mirrors should be higher than the order of wavelengths at which the reflective optical systems operate. Especially for applications in shorter wavelength regions, such as visible and ultraviolet, higher surface accuracy of freeform mirrors is required to minimize the light scattering. In this work, we propose the error compensation algorithm (ECA) for the correction of wavefront errors on freeform mirrors. The ECA converts a form error pattern into polynomial expression by fitting a least square method. The error pattern is measured by using an ultra-high accurate 3-D profilometer (UA3P, Panasonic Corp.). The measured data are fitted by two fitting models: Sag (Delta Z) data model and form (Z) data model. To evaluate fitting accuracy of these models, we compared the fitted error patterns with the measured error pattern.

  • PDF

The Analysis of Motion Error in Scanning Type XY Stage (스캐닝 방식 XY 스테이지의 운동오차 분석)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

A Review of Postpartum Depression: Focused on Psychoneuroimmunological Interaction (산후 우울의 고찰: 정신신경면역계 상호작용을 중심으로)

  • Kim, Yunmi;Ahn, Sukhee
    • Women's Health Nursing
    • /
    • v.21 no.2
    • /
    • pp.106-114
    • /
    • 2015
  • Purpose: The purpose of this review was to describe a psychoneuroimmunology (PNI) framework for postpartum depression (PPD) and discuss its implications for nursing research and practice for postpartum women. Methods: This study explored the role of hypothalamic-pituitary-adrenal (HPA) axis and inflammation as possible mediators of risk factors for PPD through literature review. Results: From this PNI view, human bodies are designed to respond with the reciprocal interactions among the neuro-endocrine and immune system when they are faced with physical or psychological stressors. Chronic stress induces alterations in the function of HPA axis, and a chronic low-grade inflammatory response is associated with depression. The dysfunctions of cytokines and HPA axis have been observed during the postpartum period. Stress promotes glucocorticoid receptor resistance, which can promote inflammatory responses. This, in turn, can contribute to the pathophysiology of depression. This can especially affect populations at vulnerable time-points, such as women in the postpartum. Conclusion: From a PNI perspective, well-designed prospective research evaluating the role of stress and inflammation as an etiology of PPD and the effect of stress reduction is warranted to prevent PPD.

Voxel-Based Thickness Analysis of Intricate Objects

  • Subburaj, K.;Patil, Sandeep;Ravi, B.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.105-115
    • /
    • 2006
  • Thickness is a commonly used parameter in product design and manufacture. Its intuitive definition as the smallest dimension of a cross-section or the minimum distance between two opposite surfaces is ambiguous for intricate solids, and there is very little reported work in automatic computation of thickness. We present three generic definitions of thickness: interior thickness of points inside an object, exterior thickness for points on the object surface, and radiographic thickness along a view direction. Methods for computing and displaying the respective thickness values are also presented. The internal thickness distribution is obtained by peeling or successive skin removal, eventually revealing the object skeleton (similar to medial axis transformation). Another method involves radiographic scanning along a viewing direction, with minimum, maximum and total thickness options, displayed on the surface of the object. The algorithms have been implemented using an efficient voxel based representation that can handle up to one billion voxels (1000 per axis), coupled with a near-real time display scheme that uses a look-up table based on voxel neighborhood configurations. Three different types of intricate objects: industrial (press cylinder casting), sculpture (Ganesha idol), and medical (pelvic bone) were used for successfully testing the algorithms. The results are found to be useful for early evaluation of manufacturability and other lifecycle considerations.

Accuracy Improvement of a 5-axis Hybrid Machine Tool (5축 혼합형 공작기계의 정밀도 향상 연구)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this paper, a novel 5-axis hybrid-kinematic machine tool is introduced and the research results on accuracy improvement of the prototype machine tool are presented. The 5-axis hybrid machine tool is made up of a 3-DOF parallel manipulator and a 2-DOF serial one connected in series. The machine tool maintains high ratio of stiffness to mass due to the parallel structure and high orientation capability due to the serial-type wrist. In order to acquire high accuracy, the methodology of measuring the output shafts by additional sensors instead of using encoder outputs at the motor shafts is proposed. In the kinematic view point, the hybrid manipulator reduces to a serial one, if the passive joints in the U-P serial chain at the center of the parallel manipulator are directly measured by additional sensors. Using the method of successive screw displacements, the kinematic error model is derived. Since a ball-bar is less expensive than a full position measurement device and sufficiently accurate for calibration, the kinematic calibration method of using a ball-bar is presented. The effectiveness of the calibration method has been verified through the simulations. Finally, the calibration experiment shows that the position accuracy of the prototype machine tool has been improved from 153 to $86{\mu}m$.