• Title/Summary/Keyword: Video-based Learning

Search Result 677, Processing Time 0.022 seconds

Video Stabilization Algorithm of Shaking image using Deep Learning (딥러닝을 활용한 흔들림 영상 안정화 알고리즘)

  • Lee, Kyung Min;Lin, Chi Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.145-152
    • /
    • 2019
  • In this paper, we proposed a shaking image stabilization algorithm using deep learning. The proposed algorithm utilizes deep learning, unlike some 2D, 2.5D and 3D based stabilization techniques. The proposed algorithm is an algorithm that extracts and compares features of shaky images through CNN network structure and LSTM network structure, and transforms images in reverse order of movement size and direction of feature points through the difference of feature point between previous frame and current frame. The algorithm for stabilizing the shake is implemented by using CNN network and LSTM structure using Tensorflow for feature extraction and comparison of each frame. Image stabilization is implemented by using OpenCV open source. Experimental results show that the proposed algorithm can be used to stabilize the camera shake stability in the up, down, left, and right shaking images.

Ensemble Machine Learning Model Based YouTube Spam Comment Detection (앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지)

  • Jeong, Min Chul;Lee, Jihyeon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.576-583
    • /
    • 2020
  • This paper proposes a technique to determine the spam comments on YouTube, which have recently seen tremendous growth. On YouTube, the spammers appeared to promote their channels or videos in popular videos or leave comments unrelated to the video, as it is possible to monetize through advertising. YouTube is running and operating its own spam blocking system, but still has failed to block them properly and efficiently. Therefore, we examined related studies on YouTube spam comment screening and conducted classification experiments with six different machine learning techniques (Decision tree, Logistic regression, Bernoulli Naive Bayes, Random Forest, Support vector machine with linear kernel, Support vector machine with Gaussian kernel) and ensemble model combining these techniques in the comment data from popular music videos - Psy, Katy Perry, LMFAO, Eminem and Shakira.

Pyramid Feature Compression with Inter-Level Feature Restoration-Prediction Network (계층 간 특징 복원-예측 네트워크를 통한 피라미드 특징 압축)

  • Kim, Minsub;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.283-294
    • /
    • 2022
  • The feature map used in the network for deep learning generally has larger data than the image and a higher compression rate than the image compression rate is required to transmit the feature map. This paper proposes a method for transmitting a pyramid feature map with high compression rate, which is used in a network with an FPN structure that has robustness to object size in deep learning-based image processing. In order to efficiently compress the pyramid feature map, this paper proposes a structure that predicts a pyramid feature map of a level that is not transmitted with pyramid feature map of some levels that transmitted through the proposed prediction network to efficiently compress the pyramid feature map and restores compression damage through the proposed reconstruction network. Suggested mAP, the performance of object detection for the COCO data set 2017 Train images of the proposed method, showed a performance improvement of 31.25% in BD-rate compared to the result of compressing the feature map through VTM12.0 in the rate-precision graph, and compared to the method of performing compression through PCA and DeepCABAC, the BD-rate improved by 57.79%.

Multimodal Interaction Framework for Collaborative Augmented Reality in Education

  • Asiri, Dalia Mohammed Eissa;Allehaibi, Khalid Hamed;Basori, Ahmad Hoirul
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.268-282
    • /
    • 2022
  • One of the most important technologies today is augmented reality technology, it allows users to experience the real world using virtual objects that are combined with the real world. This technology is interesting and has become applied in many sectors such as the shopping and medicine, also it has been included in the sector of education. In the field of education, AR technology has become widely used due to its effectiveness. It has many benefits, such as arousing students' interest in learning imaginative concepts that are difficult to understand. On the other hand, studies have proven that collaborative between students increases learning opportunities by exchanging information, and this is known as Collaborative Learning. The use of multimodal creates a distinctive and interesting experience, especially for students, as it increases the interaction of users with the technologies. The research aims at developing collaborative framework for developing achievement of 6th graders through designing a framework that integrated a collaborative framework with a multimodal input "hand-gesture and touch", considering the development of an effective, fun and easy to use framework with a multimodal interaction in AR technology that was applied to reformulate the genetics and traits lesson from the science textbook for the 6th grade, the first semester, the second lesson, in an interactive manner by creating a video based on the science teachers' consultations and a puzzle game in which the game images were inserted. As well, the framework adopted the cooperative between students to solve the questions. The finding showed a significant difference between post-test and pre-test of the experimental group on the mean scores of the science course at the level of remembering, understanding, and applying. Which indicates the success of the framework, in addition to the fact that 43 students preferred to use the framework over traditional education.

Considerations for Applying Korean Natural Language Processing Technology in Records Management (기록관리 분야에서 한국어 자연어 처리 기술을 적용하기 위한 고려사항)

  • Haklae, Kim
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.4
    • /
    • pp.129-149
    • /
    • 2022
  • Records have temporal characteristics, including the past and present; linguistic characteristics not limited to a specific language; and various types categorized in a complex way. Processing records such as text, video, and audio in the life cycle of records' creation, preservation, and utilization entails exhaustive effort and cost. Primary natural language processing (NLP) technologies, such as machine translation, document summarization, named-entity recognition, and image recognition, can be widely applied to electronic records and analog digitization. In particular, Korean deep learning-based NLP technologies effectively recognize various record types and generate record management metadata. This paper provides an overview of Korean NLP technologies and discusses considerations for applying NLP technology in records management. The process of using NLP technologies, such as machine translation and optical character recognition for digital conversion of records, is introduced as an example implemented in the Python environment. In contrast, a plan to improve environmental factors and record digitization guidelines for applying NLP technology in the records management field is proposed for utilizing NLP technology.

Development of non-face-to-face Remote Learning Program - focusing on University Software Practice (비대면 원격수업 프로그램 개발 - 대학 소프트웨어 실습 중심으로)

  • Kim, Sang-Geun
    • Journal of Industrial Convergence
    • /
    • v.19 no.6
    • /
    • pp.59-66
    • /
    • 2021
  • Globally, the prolonged pandemic of COVID-19 (COVID-19) has had a great impact on all industries. In particular, in the field of education, online classes (non-face-to-face) had some negative perceptions of online classes, such as lack of preparation for learning and student dissatisfaction with the class. According to the current situation survey in 2020, non-face-to-face classes accounted for about 56% of the class, and streaming real-time classes and video content-based classes accounted for most of the class. This study empirically analyzes the problems to be solved by online classes through the 2020-2021 survey (software application practical class university students), and explains the detailed program and development plan (implementation result). This study intends to contribute to the development of online learning development of each educational institution after the end of the corona crisis.

Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms (딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템)

  • Min-Seong Choi;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Due to the spread of high-definition black boxes and the introduction of mobile applications such as 'Smart Citizens Report' and 'Safety Report', the number of public interest reports for violations of Traffic Law has increased rapidly, resulting in shortage of police personnel to handle them. In this paper, we describe the development of a system that can automatically detect lane violations which account for the largest proportion of public interest reporting videos for violations of traffic laws, using deep learning algorithms. In this study, a method for recognizing a vehicle and a solid line object using a YOLO model and a Lanenet model, a method for tracking an object individually using a deep sort algorithm, and a method for detecting lane change violations by recognizing the overlapping range of a vehicle object's bounding box and a solid line object are described. Using this system, it is expected that the shortage of police personnel in charge will be resolved.

Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika (정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로)

  • Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 2021
  • Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.

Analysis of Approachs to Learning Based on Student-Student Verbal Interactions according to the Type of Inquiry Experiments Using Everyday Materials (실생활 소재 탐구 실험 형태에 따른 학생-학생 언어적 상호작용에서의 학습 접근 수준 분석)

  • Kim, Hye-Sim;Lee, Eun-Kyeong;Kang, Seong-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.1
    • /
    • pp.16-24
    • /
    • 2006
  • The purpose of this study was to compare student-student verbal interaction from two type's experiments; problem-solving and task-solving. For this study, five 3rd grade middle school students were selected and their verbal interactions recorded via voice and video; and later transcribed. The student-student verbal interactions were classified as questions, explanations, thoughts, or metacognition fields, which were separated into deep versus surface learning approaches. For the problem-solving experiment, findings revealed that the number of verbal interactions is more than doubled and in particular, the number of verbal interactions using deep-approach is more than quadrupled from the point of problem-recognition to problem-solution. As for the task-solving experiment, findings showed that verbal interactions remained evenly distributed throughout the entire experiment. Finally, it was also discovered that students relied upon a more deep learning approach during the problem-solving experiment than the task-solving experiment.

Positive Random Forest based Robust Object Tracking (Positive Random Forest 기반의 강건한 객체 추적)

  • Cho, Yunsub;Jeong, Soowoong;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.107-116
    • /
    • 2015
  • In compliance with digital device growth, the proliferation of high-tech computers, the availability of high quality and inexpensive video cameras, the demands for automated video analysis is increasing, especially in field of intelligent monitor system, video compression and robot vision. That is why object tracking of computer vision comes into the spotlight. Tracking is the process of locating a moving object over time using a camera. The consideration of object's scale, rotation and shape deformation is the most important thing in robust object tracking. In this paper, we propose a robust object tracking scheme using Random Forest. Specifically, an object detection scheme based on region covariance and ZNCC(zeros mean normalized cross correlation) is adopted for estimating accurate object location. Next, the detected region will be divided into five regions for random forest-based learning. The five regions are verified by random forest. The verified regions are put into the model pool. Finally, the input model is updated for the object location correction when the region does not contain the object. The experiments shows that the proposed method produces better accurate performance with respect to object location than the existing methods.