• Title/Summary/Keyword: Video sensor

Search Result 321, Processing Time 0.204 seconds

Design of UWB/WiFi Module based Wireless Transmission for Endoscopic Camera (UWB/WiFi 모듈 기반의 내시경 카메라용 무선전송 설계)

  • Shim, Dongha;Lee, Jaegon;Yi, Jaeson;Cha, Jaesang;Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Ultra-wide-angle wireless endoscopes are demonstrated in this paper. The endoscope is composed of an ultra-wide-angle camera module and wireless transmission module. A lens unit with the ultra-wide FOV of 162 degrees is designed and manufactured. The lens, image sensor, and camera processor unit are packaged together in a $3{\times}3{\times}9-cm3$ case. The wireless transmission modules are implemented based on UWB- and WiFi-based platform, respectively. The UWB-based module can transmit HD video to a computer in resolution of $2048{\times}1536$ (QXGA) and the frame rate of 15 fps in MJPEG compression mode. The maximum data transfer rate reaches 41.2 Mbps. The FOV and the resolution of the endoscope is comparable to a medical-grade endoscope. The FOV and resolution is ~3X and 16X higher than that of a commercial high-performance WiFi endoscope, respectively. The WiFi-based module streams out video to a smart device with th maximum date transfer rate of 1.5 Mbps at the resolution of $640{\times}480$ (VGA) and the frame rate of 30 fps in MJPEG compression mode. The implemented components show the feasibility of cheap medical-grade wireless electronic endoscopes, which can be effectively used in u-healthcare, emergency treatment, home-healthcare, remote diagnosis, etc.

Fixed Pattern Noise Reduction in Infrared Videos Based on Joint Correction of Gain and Offset (적외선 비디오에서 Gain과 Offset 결합 보정을 통한 고정패턴잡음 제거기법)

  • Kim, Seong-Min;Bae, Yoon-Sung;Jang, Jae-Ho;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.35-44
    • /
    • 2012
  • Most recent infrared (IR) sensors have a focal-plane array (FPA) structure. Spatial non-uniformity of a FPA structure, however, introduces unwanted fixed pattern noise (FPN) to images. This non-uniformity correction (NUC) of a FPA can be categorized into target-based and scene-based approaches. In a target-based approach, FPN can be separated by using a uniform target such as a black body. Since the detector response randomly drifts along the time axis, however, several scene-based algorithms on the basis of a video sequence have been proposed. Among those algorithms, the state-of-the-art one based on Kalman filter uses one-directional warping for motion compensation and only compensates for offset non-uniformity of IR camera detectors. The system model using one-directional warping cannot correct the boundary region where a new scene is being introduced in the next video frame. Furthermore, offset-only correction approaches may not completely remove the FPN in images if it is considerably affected by gain non-uniformity. Therefore, for FPN reduction in IR videos, we propose a joint correction algorithm of gain and offset based on bi-directional warping. Experiment results using simulated and real IR videos show that the proposed scheme can provide better performance compared with the state-of-the art in FPN reduction.

Individual Ortho-rectification of Coast Guard Aerial Images for Oil Spill Monitoring (유출유 모니터링을 위한 해경 항공 영상의 개별정사보정)

  • Oh, Youngon;Bui, An Ngoc;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1479-1488
    • /
    • 2022
  • Accidents in which oil spills occur intermittently in the ocean due to ship collisions and sinkings. In order to prepare prompt countermeasures when such an accident occurs, it is necessary to accurately identify the current status of spilled oil. To this end, the Coast Guard patrols the target area with a fixed-wing airplane or helicopter and checks it with the naked eye or video, but it was difficult to determine the area contaminated by the spilled oil and its exact location on the map. Accordingly, this study develops a technology for direct ortho-rectification by automatically geo-referencing aerial images collected by the Coast Guard without individual ground reference points to identify the current status of spilled oil. First, meta information required for georeferencing is extracted from a visualized screen of sensor information such as video by optical character recognition (OCR). Based on the extracted information, the external orientation parameters of the image are determined. Images are individually orthorectified using the determined the external orientation parameters. The accuracy of individual orthoimages generated through this method was evaluated to be about tens of meters up to 100 m. The accuracy level was reasonably acceptable considering the inherent errors of the position and attitude sensors, the inaccuracies in the internal orientation parameters such as camera focal length, without using no ground control points. It is judged to be an appropriate level for identifying the current status of spilled oil contaminated areas in the sea. In the future, if real-time transmission of images captured during flight becomes possible, individual orthoimages can be generated in real time through the proposed individual orthorectification technology. Based on this, it can be effectively used to quickly identify the current status of spilled oil contamination and establish countermeasures.

A Study on Experimental Prediction of Landslide in Korea Granite Weathered Soil using Scaled-down Model Test (축소모형 실험을 통한 국내 화강암 풍화토의 산사태 예측 실험 연구)

  • Son, In-Hwan;Oh, Yong-Thak;Lee, Su-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.439-447
    • /
    • 2019
  • In this study, experiments were conducted to establish appropriate measures for slopes with high risk of collapse and to obtain results for minimizing slope collapse damage by detecting the micro-displacement of soil in advance by installing a laser sensor and a vibration sensor in the landslide reduction model experiment. Also, the behavior characteristics of the soil layer due to rainfall and moisture ratio changes such as pore water pressure and moisture were analyzed through a landslide reduction model experiment. The artificial slope was created using granite weathering soil, and the resulting water ratio(water pressure, water) changes were measured at different rainfall conditions of 200mm/hr and 400mm/hr. Laser sensors and vibration sensors were applied to analyze the surface displacement, and the displacement time were compared with each other by video analysis. Experiments have shown that higher rainfall intensity takes shorter time to reach the limit, and increase in the pore water pressure takes shorter time as well. Although the landslide model test does not fully reflect the site conditions, measurements of the time of detection of displacement generation using vibration sensors show that the timing of collapse is faster than the method using laser sensors. If ground displacement measurements using sensors are continuously carried out in preparation for landslides, it is considered highly likely to be utilized as basic data for predicting slope collapse, reducing damage, and activating the measurement industry.

A Study on Methods for Accelerating Sea Object Detection in Smart Aids to Navigation System (스마트 항로표지 시스템에서 해상 객체 감지 가속화를 위한 방법에 관한 연구)

  • Jeon, Ho-Seok;Song, Hyun-hak;Kwon, Ki-Won;Kim, Young-Jin;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.47-58
    • /
    • 2022
  • In recent years, navigation aids, which plays as sea traffic lights, have been digitized, and are developing beyond simple sign purpose to provide various functions such as marine information collection, supervision, control, etc. For example, Busan Port which is located in South Korea is leading the application of the advanced technologies by installing cameras on buoys and recording video images to supervise maritime accidents. However, there are difficulties to perform their major functions since the advanced technologies require long-term battery operation and also management and maintenance of them are hampered by marine characteristics. This study proposes a system that can automatically notify maritime objects passing around buoys by analyzing image information. In the existing sensor-based accident prevention systems, the alarms are generated by a collision detection sensor. The system can identify the cause of the accident whilst even though it is difficult not possible to fundamentally prevent the accidents. Therefore, in order to overcome these limitations, the proposed a maritime object detection system is based on marine characteristics. The experiments demonstrate that the proposed system shows about 5 times faster processing speed than other existing algorithms.

Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI (AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구)

  • Han, Su-yeon;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.165-167
    • /
    • 2022
  • The proportion of cat cats among companion animals has been increasing at an average annual rate of 25.4% since 2012. Cats have strong wildness compared to dogs, so they have a characteristic of hiding diseases well. Therefore, when the guardian finds out that the cat has a disease, the disease may have already worsened. Symptoms such as anorexia (eating avoidance), vomiting, diarrhea, polydipsia, and polyuria in cats are some of the symptoms that appear in cat diseases such as diabetes, hyperthyroidism, renal failure, and panleukopenia. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia (drinking a lot of water), polyuria (a large amount of urine), and frequent urination (urinating frequently) more quickly. In this paper, 1) Efficient version of DeepLabCut for posture prediction running on an artificial intelligence server, 2) yolov4 for object detection, and 3) LSTM are used for behavior prediction. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the main server system.

  • PDF

Robotic String Musical Instrument as an Interactive Game Prototype (체감형 게임 원형으로서의 로봇 현악기 설치미술)

  • Kim, Tae-Hee
    • Journal of Korea Game Society
    • /
    • v.12 no.1
    • /
    • pp.57-65
    • /
    • 2012
  • Interactive games allow users to obtain embodied experience using the bodies as controllers. The same is true in interactive media arts where users engage in active participation. In contrast to video games, physical body feedback is desired and such practice can be found in robotic arts. I suggest that interactive media arts and interactive games should share common foundations. In this context, I introduce and explain an interactive robotic art work implemented. This work is a musical instrument that employs a robot which travels sitting on two strings in response to audience positions. In results, the robot modulates the vibrations of the strings by causing the effective lengths of the strings changed. The robot uses an economic multi-cell proximity sensor in order to track the audience. In the interaction, phenomenological tension could take place in the performative narrative space. In this paper, I discuss this interactive robotic work in the context of interactive games with a few examples.

Pulse wave Measurement System by analyzing a Moving Pulse Image in the Capillary Tube (모세관 맥동파 영상을 이용한 맥파 측정 시스템)

  • Lee, Woo-Beom;Choi, Chang-Yur;Hong, You-Sik;Lee, Sang-Suk;Nam, Dong-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.145-151
    • /
    • 2012
  • The pulsimeter is a representative device in the oriental medicine, which can analysis a risk factor in a cardiovascular diseases. However, most of the previous methods have the limit by the contacted sate of the brachial pulse and sensor in the measuring time, the inaccuracy of detected pulse, and the difficulty of pulse analysis. Accordingly, we propose the moving pulse image analysis based pulsimeter that can acquire a pulse of patient in real time by analyzing a moving image. then this video is shot the state change of the T.S. occurred by a pulse in capillary. In order to evaluate the performance of the our pulsimeter, we measured a respective detecting-rate about the essential 5 feature-points in the pulse analysis from the detected original pulse. As a result, the proposed method is very successful.

A JPEG Input Buffer Architecture for Real-Time Applications (실시간 JPEG 입력 버퍼 아키텍처)

  • Im, Min-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.7-13
    • /
    • 2002
  • When a USB digital camera is used for PC video-conference applications, motion picture data need to be transferred to the PC through the USB port. Due to the mismatch between the data rates of the USB and the motion picture, data compression should be performed before the transmission from the USB. While many motion picture compression algorithms require large intermediate memory space, the JPEG algorithm does not need to store an entire frame for the compression. Instead, a relatively small buffer is required at the input of the JPEG compression engine to resolve the inconsistency between the orders of the inputted data and the consumed data. Data reordering can be easily implemented using a double buffering scheme, which still requires a considerable size of memory. In this paper, a novel memory management scheme is proposed to avoid the double buffering. The proposed memory architecture requires a small amount of memory and a simple address generation scheme, resulting in overall cost reduction.

Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm (스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘)

  • Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2018
  • Behavior awareness is a technology that recognizes human behavior through data and can be used in applications such as risk behavior through video surveillance systems. Conventional behavior recognition algorithms have been performed using the 2D camera image device or multi-mode sensor or multi-view or 3D equipment. When two-dimensional data was used, the recognition rate was low in the behavior recognition of the three-dimensional space, and other methods were difficult due to the complicated equipment configuration and the expensive additional equipment. In this paper, we propose a method of recognizing human behavior using only CCTV images without additional equipment using only RGB and depth information. First, the skeleton extraction algorithm is applied to extract points of joints and body parts. We apply the equations to transform the vector including the displacement vector and the relational vector, and study the continuous vector data through the RNN model. As a result of applying the learned model to various data sets and confirming the accuracy of the behavior recognition, the performance similar to that of the existing algorithm using the 3D information can be verified only by the 2D information.