• Title/Summary/Keyword: Video biometric recognition

Search Result 16, Processing Time 0.025 seconds

Implementation of Immersive Interactive Content Using Face Recognition Technology - (Exhibition of ReneMagritte) Focused on 'ARPhotoZone' (얼굴 인식 기술을 활용한 실감형 인터랙티브 콘텐츠의 구현 - (르네마그리트 특별전) AR포토존을 중심으로)

  • Lee, Eun-Jin;Sung, Jung-Hwan
    • Journal of Korea Game Society
    • /
    • v.20 no.5
    • /
    • pp.13-20
    • /
    • 2020
  • Biometric technology with the advance of deep learning enabled the new types of content. Especially, face recognition can provide immersion in terms of convenience and non-compulsiveness, but most commercial content has limitations that are limited to application areas. In this paper, we attempted to overcome these limitations, implement content that can utilize face recognition technology based on realtime video feed. We used Unity engine for high quality graphics, but performance degradation and frame drop occurred. To solve them, we augmented Dlib toolkit and adjusted the resolution image.

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.

A Study on the PCA base Face Authentication System for Untact Work (비대면(Untact) 업무를 위한 화상인식 PCA 사용자 인증 시스템 연구)

  • Park, jongsoon;Park, chankil
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2020
  • As the information age develops, Online education and Non-face-to-face work are becoming common. Telecommuting such as tele-education and video conferencing through the application of information technology is also becoming common due to the COVID-19. Unexpected information leakage can occur online when the company conducts work remotely or holds meetings. A system to authenticate users is needed to reduce information leakage. In this study, there are various ways to authenticate remote access users. By applying burn authentication using a biometric system, a method to identify users is proposed. The method used in the study was studied the main component analysis method, which recognizes several characteristics in facial recognition and processes interrelationships. It proposed a method that can be easily utilized without additional devices by utilizing a camera connected to a computer by authenticating the user using the shape and characteristics of the face by using the PCA method.

A Study on Protection of Iris and fingerprint Data Based on Digital Watermarking in Mid-Frequency Band (중간 주파수 영역에서의 디지털 워터마킹 기법에 의한 홍채 및 지문 데이터 보호 연구)

  • Jeong, Dae-Sik;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1227-1238
    • /
    • 2005
  • Recently, with the advance of network and internet technologies, it is appeared the Problem that the digital contents such as image, voice and video are illegally pirated and distributed. To protect the copyright of the digital contents, the digital watermarking technology of inserting the provider's information into the contents has been widely used. In this paper, we propose the method of applying the digital watermarking into biometric information such as fingerprint and iris in order to prevent the problem caused by steal and misuse. For that, we propose the method of inserting watermark in frequency domain, compare the recognition performance before and aster watermark inserting. Also, we experiment the robustness of proposed method against blurring attack, which is conventionally taken on biometrics data. Experimental results show that our proposed method can be used for protecting iris and fingerprint data, efficiently.

  • PDF

Recognition of dog's front face using deep learning and machine learning (딥러닝 및 기계학습 활용 반려견 얼굴 정면판별 방법)

  • Kim, Jong-Bok;Jang, Dong-Hwa;Yang, Kayoung;Kwon, Kyeong-Seok;Kim, Jung-Kon;Lee, Joon-Whoan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.1-9
    • /
    • 2020
  • As pet dogs rapidly increase in number, abandoned and lost dogs are also increasing in number. In Korea, animal registration has been in force since 2014, but the registration rate is not high owing to safety and effectiveness issues. Biometrics is attracting attention as an alternative. In order to increase the recognition rate from biometrics, it is necessary to collect biometric images in the same form as much as possible-from the face. This paper proposes a method to determine whether a dog is facing front or not in a real-time video. The proposed method detects the dog's eyes and nose using deep learning, and extracts five types of directional face information through the relative size and position of the detected face. Then, a machine learning classifier determines whether the dog is facing front or not. We used 2,000 dog images for learning, verification, and testing. YOLOv3 and YOLOv4 were used to detect the eyes and nose, and Multi-layer Perceptron (MLP), Random Forest (RF), and the Support Vector Machine (SVM) were used as classifiers. When YOLOv4 and the RF classifier were used with all five types of the proposed face orientation information, the face recognition rate was best, at 95.25%, and we found that real-time processing is possible.

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.