• Title/Summary/Keyword: Video Surveillance and Monitoring

Search Result 91, Processing Time 0.023 seconds

Smartphone Real Time Streaming Service using Parallel TCP Transmission (병렬 TCP 통신을 이용한 스마트폰 실시간 스트리밍 서비스)

  • Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.937-941
    • /
    • 2016
  • This paper proposed an efficient multiple TCP mechanism using Android smartphones for remote control video Wi-Fi stream transmission via network communications in real time. The wireless video stream transmission mechanism can be applied in various area such as real time server stream transmissions, movable drones, disaster robotics and real time security monitoring systems. Moreover, we urgently need to transmit data in timely fashion such as medical emergency, security surveillance and disaster prevention. Our parallel TCP transmission system can play an important role in several area such as real time server stream transmissions, movable drones, disaster robotics and real time security monitoring systems as mentioned in the previous sentence. Therefore, we designed and implemented a parallel TCP transmission (parallel stream) for an efficient real time video streaming services. In conclusion, we evaluated proposed mechanism using parallel TCP transmission under various environments with performance analysis.

Design of Upper Body Detection System Using RBFNN Based on HOG Algorithm (HOG기반 RBFNN을 이용한 상반신 검출 시스템의 설계)

  • Kim, Sun-Hwan;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.259-266
    • /
    • 2016
  • Recently, CCTV cameras are emplaced actively to reinforce security and intelligent surveillance systems have been under development for detecting and monitoring of the objects in the video. In this study, we propose a method for detection of upper body in intelligent surveillance system using FCM-based RBFNN classifier realized with the aid of HOG features. Firstly, HOG features that have been originally proposed to detect the pedestrian are adopted to train the unique gradient features about upper body. However, HOG features typically exhibit a very high dimension of which is proportional to the size of the input image, it is necessary to reduce the dimension of inputs of the RBFNN classifier. Thus the well-known PCA algorithm is applied prior to the RBFNN classification step. In the computer simulation experiments, the RBFNN classifier was trained using pre-classified upper body images and non-person images and then the performance of the proposed classifier for upper body detection is evaluated by using test images and video sequences.

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

Water Region Segmentation Method using Graph Algorithm (그래프 알고리즘을 이용한 강물 영역 분할 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.787-794
    • /
    • 2018
  • The various natural disasters such as floods and localized heavy rains are increasing due to the global warming. If a natural disaster can be detected and analyzed in advance and more effectively, it can prevent enormous damage of natural disasters. Recent development in visual sensor technologies has encouraged various studies on monitoring environments including rivers. In this paper, we propose a method to detect water regions from river images which can be exploited for river surveillance systems using video sensor networks. In the proposed method, we first segment a river image finely using the minimum spanning tree algorithm. Then, the seed regions for the river region and the background region are set by using the preliminary information, and each seed region is expanded by merging similar regions to segment the water region from the image. Experimental results show that the proposed method separates the water region from a river image easier and accurately.

Shadow Removal Based on Chromaticity and Entropy for Efficient Moving Object Tracking (효과적인 이동물체 추적을 위한 색도 영상과 엔트로피 기반의 그림자 제거)

  • Park, Ki-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.387-392
    • /
    • 2014
  • Recently, various research for intelligent video surveillance system have been proposed, but the existing monitoring systems are inefficient because all of situational awareness is judged by the human. In this paper, shadow removal based moving object tracking method is proposed using the chromaticity and entropy image. The background subtraction model, effective in the context awareness environment, has been applied for moving object detection. After detecting the region of moving object, the shadow candidate region has been estimated and removed by RGB based chromaticity and minimum cross entropy images. For the validity of the proposed method, the highway video is used to experiment. Some experiments are conducted so as to verify the proposed method, and as a result, shadow removal and moving object tracking are well performed.

Preprocessing for High Quality Real-time Imaging Systems by Low-light Stretch Algorithm

  • Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.585-589
    • /
    • 2018
  • Consumer demand for high quality image/video services led to growing trend in image quality enhancement study. Therefore, recent years was a period of substantial progress in this research field. Through careful observation of the image quality after processing by image enhancement algorithms, we perceived that the dark region in the image usually suffered loss of contrast to a certain extent. In this paper, the low-light stretch preprocessing algorithm is, hence, proposed to resolve the aforementioned issue. The proposed approach is evaluated qualitatively and quantitatively against the well-known histogram equalization and Photoshop curve adjustment. The evaluation results validate the efficiency and superiority of the low-light stretch over the benchmarking methods. In addition, we also propose the 255MHz-capable hardware implementation to ease the process of incorporating low-light stretch into real-time imaging systems, such as aerial surveillance and monitoring with drones and driving aiding systems.

Multiple Object Tracking with Color-Based Particle Filter for Intelligent Space (공간지능화를 위한 색상기반 파티클 필터를 이용한 다중물체추적)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

Crowd Behavior Detection using Convolutional Neural Network (컨볼루션 뉴럴 네트워크를 이용한 군중 행동 감지)

  • Ullah, Waseem;Ullah, Fath U Min;Baik, Sung Wook;Lee, Mi Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.6
    • /
    • pp.7-14
    • /
    • 2019
  • The automatic monitoring and detection of crowd behavior in the surveillance videos has obtained significant attention in the field of computer vision due to its vast applications such as security, safety and protection of assets etc. Also, the field of crowd analysis is growing upwards in the research community. For this purpose, it is very necessary to detect and analyze the crowd behavior. In this paper, we proposed a deep learning-based method which detects abnormal activities in surveillance cameras installed in a smart city. A fine-tuned VGG-16 model is trained on publicly available benchmark crowd dataset and is tested on real-time streaming. The CCTV camera captures the video stream, when abnormal activity is detected, an alert is generated and is sent to the nearest police station to take immediate action before further loss. We experimentally have proven that the proposed method outperforms over the existing state-of-the-art techniques.

A Study of Background Edge Generation for Moving Object Detection under Moving Camera (이동카메라에서 이동물체 감지를 위한 배경에지 생성에 관한 연구)

  • Lee, June-Hyung;Chae, Ok-Sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.151-156
    • /
    • 2006
  • This paper presents an background edge generation based automatic algorithm for detection of moving objects under moving camera. Background image is generated by rotating the fixed the camera on the tripod horizontally, aligning and reorganizing this images. We develop an efficient approach for robust panoramic background edge generation as well as method of edge matching between input image and background image. We applied the proposed algorithm to real image sequences. The proposed method can be successfully realized in various monitoring systems like intrusion detection as well as video surveillance.

  • PDF

Real-Time Motion Detection and Storage Method on a Compressed Domain for Multi-channel Video Surveillance Monitoring System (서베일런스 환경을 위한 압축 도메인에서 다채널 실시간 움직임 검출 및 저장 시스템)

  • wu, Xiangjian;Kim, Youngwoong;Ahn, Yong-Jo;Kim, Yong-sung;Kim, Seung-Hwan;Cho, Hyung-Jun;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.56-58
    • /
    • 2014
  • 본 논문에서는 압축 도메인에서 고속으로 움직임을 검출하고 해당 구간을 저장 하는 알고리즘을 제안한다. 제안하는 알고리즘은 H.264/AVC 기반의 압축 비트스트림에서 움직임 벡터와 참조프레임을 이용하여 움직임이 있는 프레임을 검출하고 움직임 유무에 따라 GOP 단위로 저장하는 과정을 수행한다. 압축도메인에서 움직임 검출과 구간 저장을 수행함으로써 복잡도를 낮추고 비디오 저장을 위한 공간을 절약해 실시간 다채널 영상 처리에 최적화 된 성능을 제공한다. 제안하는 움직임 검출 및 저장 시스템은 single thread 환경에서 실시간으로 평균 2957 프레임을 처리 가능하며, Multi thread의 경우 30 fps 영상 98개 채널을 실시간으로 처리 가능하다.

  • PDF