• Title/Summary/Keyword: Video Object Detection

Search Result 354, Processing Time 0.035 seconds

Intrusion Detection Algorithm based on Motion Information in Video Sequence (비디오 시퀀스에서 움직임 정보를 이용한 침입탐지 알고리즘)

  • Kim, Alla;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.284-288
    • /
    • 2010
  • Video surveillance is widely used in establishing the societal security network. In this paper, intrusion detection based on visual information acquired by static camera is proposed. Proposed approach uses background model constructed by approximated median filter(AMF) to find a foreground candidate, and detected object is calculated by analyzing motion information. Motion detection is determined by the relative size of 2D object in RGB space, finally, the threshold value for detecting object is determined by heuristic method. Experimental results showed that the performance of intrusion detection is better one when the spatio-temporal candidate informations change abruptly.

Abnormal Situation Detection on Surveillance Video Using Object Detection and Action Recognition (객체 탐지와 행동인식을 이용한 영상내의 비정상적인 상황 탐지 네트워크)

  • Kim, Jeong-Hun;Choi, Jong-Hyeok;Park, Young-Ho;Nasridinov, Aziz
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.186-198
    • /
    • 2021
  • Security control using surveillance cameras is established when people observe all surveillance videos directly. However, this task is labor-intensive and it is difficult to detect all abnormal situations. In this paper, we propose a deep neural network model, called AT-Net, that automatically detects abnormal situations in the surveillance video, and introduces an automatic video surveillance system developed based on this network model. In particular, AT-Net alleviates the ambiguity of existing abnormal situation detection methods by mapping features representing relationships between people and objects in surveillance video to the new tensor structure based on sparse coding. Through experiments on actual surveillance videos, AT-Net achieved an F1-score of about 89%, and improved abnormal situation detection performance by more than 25% compared to existing methods.

Robust Multi-person Tracking for Real-Time Intelligent Video Surveillance

  • Choi, Jin-Woo;Moon, Daesung;Yoo, Jang-Hee
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.551-561
    • /
    • 2015
  • We propose a novel multiple-object tracking algorithm for real-time intelligent video surveillance. We adopt particle filtering as our tracking framework. Background modeling and subtraction are used to generate a region of interest. A two-step pedestrian detection is employed to reduce the computation time of the algorithm, and an iterative particle repropagation method is proposed to enhance its tracking accuracy. A matching score for greedy data association is proposed to assign the detection results of the two-step pedestrian detector to trackers. Various experimental results demonstrate that the proposed algorithm tracks multiple objects accurately and precisely in real time.

Block-Surveillance: Blockchain-based Surveillance Camera Video Management System Model and Design Method for City Safety (도시 안전을 위한 블록체인 기반의 감시카메라 영상 관리 시스템 모델 및 설계 방법)

  • Ji Woon Lee;Hee Suk Seo
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.65-75
    • /
    • 2024
  • This paper proposes a new approach to video surveillance systems, which have become essential components in modern urban management. By utilizing blockchain and IPFS, it enhances data integrity and privacy protection. Additionally, anomaly detection and automatic video storage are enabled through object detection technology, thus improving urban safety and security. This integrated approach serves as an efficient management methodology for surveillance systems, providing city administrators and citizens with a safer and more effective monitoring environment.

Blur the objects in image by YOLO (YOLO를 이용한 이미지 Blur 처리)

  • Kang, Dongyeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.431-434
    • /
    • 2019
  • In the case of blur processing, it is common to use a tool such as Photoshop to perform processing manually. However, it can be considered very efficient if the blur is processed at one time in the object detection process. Based on this point, we can use the object detection model to blur the objects during the process. The object detection is performed by using the YOLO [3] model. If such blur processing is used, it may be additionally applied to streaming data of video or image.

Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications (비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.12-20
    • /
    • 2011
  • In this paper, we propose an efficient object detection and classification algorithm for video surveillance applications. Previous researches mainly concentrated either on object detection or classification using particular type of feature e.g., Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Feature (SURF) etc. In this paper we propose an algorithm that mutually performs object detection and classification. We combinedly use heterogeneous types of features such as texture and color distribution from local patches to increase object detection and classification rates. We perform object detection using spatial clustering on interest points, and use Bag of Words model and Naive Bayes classifier respectively for image representation and classification. Experimental results show that our combined feature is better than the individual local descriptor in object classification rate.

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

  • Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.

Research on Artificial Intelligence Based De-identification Technique of Personal Information Area at Video Data (영상데이터의 개인정보 영역에 대한 인공지능 기반 비식별화 기법 연구)

  • In-Jun Song;Cha-Jong Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2024
  • This paper proposes an artificial intelligence-based personal information area object detection optimization method in an embedded system to de-identify personal information in video data. As an object detection optimization method, first, in order to increase the detection rate for personal information areas when detecting objects, a gyro sensor is used to collect the shooting angle of the image data when acquiring the image, and the image data is converted into a horizontal image through the collected shooting angle. Based on this, each learning model was created according to changes in the size of the image resolution of the learning data and changes in the learning method of the learning engine, and the effectiveness of the optimal learning model was selected and evaluated through an experimental method. As a de-identification method, a shuffling-based masking method was used, and double-key-based encryption of the masking information was used to prevent restoration by others. In order to reuse the original image, the original image could be restored through a security key. Through this, we were able to secure security for high personal information areas and improve usability through original image restoration. The research results of this paper are expected to contribute to industrial use of data without personal information leakage and to reducing the cost of personal information protection in industrial fields using video through de-identification of personal information areas included in video data.