• 제목/요약/키워드: Vickers surface microhardness

검색결과 54건 처리시간 0.028초

Effect of Blood Contamination on Vickers Microhardness and Surface Morphology of Mineral Trioxide Aggregate

  • Jaehyun Seung;Seong-Jin Shin;Byounghwa Kim;Ji-Myung Bae;Jiyoung Ra
    • 대한소아치과학회지
    • /
    • 제51권2호
    • /
    • pp.165-175
    • /
    • 2024
  • This study aimed to investigate the effects of blood contamination on the Vickers hardness and the surface morphology of premixed MTA and compare them with the effects on conventional MTA. The Vickers microhardness of Endocem MTA Premixed Regular (EP) and ProRoot MTA (PM) was assessed after immersion in fetal bovine serum (FBS) and saline. Stem cells from human exfoliated deciduous teeth (SHED) were seeded on MTA after immersion in FBS, saline, and deionized water (DW). Cell adhesion patterns and surface morphology were visualized via scanning electron microscopy (SEM). The surface microhardness of EP and PM in FBS was lower than in saline. However, short-term exposure of PM to FBS did not reduce the microhardness compared to saline. Angular crystals formed in water, while rounded crystals with more air voids appeared in FBS. Favorable SHED attachment occurred in all groups. Overall, the surface hardness of EP and PM decreased after FBS exposure, although PM was less influenced. We suggest minimizing the amount of bleeding when using MTA clinically; nevertheless, PM remains an option with more expected blood contamination than EP. In summary, exposure to FBS decreased mechanical performance but allowed cell adhesion for both MTAs, with PM being more resistant to these changes.

Effect of Dentin Bonding Agent Acidity on Surface Microhardness of Mineral Trioxide Aggregate

  • Yun-Hui Im;Yoon Lee
    • Journal of Korean Dental Science
    • /
    • 제17권1호
    • /
    • pp.36-44
    • /
    • 2024
  • Purpose: This study investigated the effect of dentin bonding agent acidity on surface microhardness of MTA. Materials and Methods: Forty cylindrical molds (3 mm×5 mm) were prepared, and three dentin bonding agents with different acidities: Adper Single Bond 2 (ASB), Single Bond Universal (SBU), and Clearfil SE bond 2 (CSE) were applied to the inner surface of the molds (n=10). No bonding agent was applied in the control group. MTA was mixed and inserted into the molds and sealed with a wet cotton pellet for 4 days. After setting, the Vickers microhardness (HV) test was done at 200, 400, 600 ㎛ from the inner surface of the mold. One-way ANOVA was conducted for all samples. A P-value of less than .05 was considered significant. Tukey HSD test was performed for post-hoc analysis. Results: The mean HV values and standard deviations were 67.02±11.38 (Con), 48.76±11.33 (ASB), 43.78±11.19 (CSE), 37.84±9.36 (SBU), respectively. The difference between the control group and the experimental groups was statistically significant (P<0.001). The difference between ASB and SBU was statistically significant (P<0.001), while the difference between SBU and CSE was not. There were no statistically significant differences between the various points from the inner surface of the mold within each group (P>0.05). Conclusion: Results of the current study indicate that use of dentin bonding agents with MTA can reduce the surface microhardness of MTA. Moreover, there is a direct relationship between the acidity of dentin bonding agents and the surface microhardness of MTA.

Effect of acidic solutions on the microhardness of dentin and set OrthoMTA and their cytotoxicity on murine macrophage

  • Oh, Soram;Perinpanayagam, Hiran;Lee, Yoon;Kum, Jae-Won;Yoo, Yeon-Jee;Lim, Sang-Min;Chang, Seok Woo;Shon, Won-Jun;Lee, Woocheol;Baek, Seung-Ho;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • 제41권1호
    • /
    • pp.12-21
    • /
    • 2016
  • Objectives: To evaluate the effects of three acids on the microhardness of set mineral trioxide aggregate (MTA) and root dentin, and cytotoxicity on murine macrophage. Materials and Methods: OrthoMTA (BioMTA) was mixed and packed into the human root dentin blocks of 1.5 mm diameter and 5 mm height. Four groups, each of ten roots, were exposed to 10% citric acid (CA), 5% glycolic acid (GA), 17% ethylenediaminetetraacetic acid (EDTA), and saline for five minutes after setting of the OrthoMTA. Vickers surface microhardness of set MTA and dentin was measured before and after exposure to solutions, and compared between groups using one-way ANOVA with Tukey test. The microhardness value of each group was analyzed using student t test. Acid-treated OrthoMTA and dentin was examined by scanning electron microscope (SEM). Cell viability of tested solutions was assessed using WST-8 assay and murine macrophage. Results: Three test solutions reduced microhardness of dentin. 17% EDTA demonstrated severe dentinal erosion, significantly reduced the dentinal microhardness compared to 10% CA (p = 0.034) or 5% GA (p = 0.006). 10% CA or 5% GA significantly reduced the surface microhardness of set MTA compared to 17% EDTA and saline (p < 0.001). Acid-treated OrthoMTA demonstrated microporous structure with destruction of globular crystal. EDTA exhibited significantly more cellular toxicity than the other acidic solutions at diluted concentrations (0.2, 0.5, 1.0%). Conclusions: Tested acidic solutions reduced microhardness of root dentin. Five minute's application of 10% CA and 5% GA significantly reduced the microhardness of set OrthoMTA with lower cellular cytotoxicity compared to 17% EDTA.

12%-Cr 강의 C0$_{2}$레이저 표면 경화

  • 김재도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.84-88
    • /
    • 1992
  • Laser beam hardenling of 12%-Cr steel has been evaluated by using a continuous wave 3 kW CO$\_$2/ laser with a hardening mirror set. Experiment was performed on the optimum hardening condition with a laser power of 2.85kW and travel speed of 10 and 5 m/min. Multi passes have been alsotried to find the hardening characteristics of partly overlapped zone. The black paint to use at high temperature was adopted to increases the absorptivity of laser beam energy with the wavelength of 10.6 .mu. m at the surface of bese metal. The microstructure of the hardened layers was observed by using a light microscopy. SEM and TEM. A fine lamellar martensite formed in the hardened zones exhibits very high Vickers microhardness of 600 Hv, whereas the tempered martesite distributes in the base metal with Vickers microhardness of 240 Hv. It has been found that laser hardening with multi pass showed no significant drop of the hardness between adjacent passes.

Pulse Electrodeposition and Characterization of Ni-Si3N4 Composite Coatings

  • Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • 한국표면공학회지
    • /
    • 제43권5호
    • /
    • pp.224-229
    • /
    • 2010
  • $Ni-Si_3N_4$ nano-composite coatings were prepared by pulse current (PC) electrodeposition and direct current (DC) electrodeposition techniques. The micro-structure of the coatings was characterized by scanning electron microscopy (SEM), vickers microhardness, X-Ray Diffraction (XRD) and wear-friction tests. The results showed that the micro-structure and wear performance of the coatings were affected by the electrodeposition techniques. Pulse current electrodeposited $Ni-Si_3N_4$ composite coatings exhibited higher microhardness, smooth surface, and better wear resistance properties as compared to coatings prepared under DC condition. The $Ni-Si_3N_4$ composite coatings prepared at 50 Hz pulse frequency with 10% duty cycles has shown higher codeposition of nano-particles. Consequently, increased microhardness and less plastic deformations occurred in coatings during sliding wear test. The XRD patterns revealed that the increased pulse frequencies changed the preferred (100) nickel crystallite orientations into mixed (111) and (100) orientations.

Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions

  • Shokouhinejad, Noushin;Jafargholizadeh, Leila;Khoshkhounejad, Mehrfam;Nekoofar, Mohammad Hossein;Raoof, Maryam
    • Restorative Dentistry and Endodontics
    • /
    • 제39권4호
    • /
    • pp.253-257
    • /
    • 2014
  • Objectives: This study aimed to compare the surface microhardness of mineral trioxide aggregate (MTA) samples having different thicknesses and exposed to human blood from one side and with or without a moist cotton pellet on the other side. Materials and Methods: Ninety cylindrical molds with three heights of 2, 4, and 6 mm were fabricated. In group 1 (dry condition), molds with heights of 2, 4, and 6 mm (10 molds of each) were filled with ProRoot MTA (Dentsply Tulsa Dental), and the upper surface of the material was not exposed to any additional moisture. In groups 2 and 3, a distilled water- or phosphate-buffered saline (PBS)-moistened cotton pellet was placed on the upper side of MTA, respectively. The lower side of the molds in all the groups was in contact with human blood-wetted foams. After 4 day, the Vickers microhardness of the upper surface of MTA was measured. Results: In the dry condition, the 4 and 6 mm-thick MTA samples showed significantly lower microhardness than the 2 mm-thick samples (p = 0.003 and p = 0.001, respectively). However, when a distilled water- or PBS-moistened cotton pellet was placed over the MTA, no significant difference was found between the surface microhardness of samples having the abovementioned three thicknesses of the material (p = 0.210 and p = 0.112, respectively). Conclusions: It could be concluded that a moist cotton pellet must be placed over the 4 to 6 mm-thick MTA for better hydration of the material. However, this might not be necessary when 2 mm-thick MTA is used.

각각의 광조사기가 복합레진의 미세경도와 미세누출에 미치는 영향 (EFFECT OF EACH LIGHT CURING UNITS ON THE MICROHARDNESS AND MICROLEAKAGE OF COMPOSITE RESIN)

  • 정유진;이희주;허복
    • Restorative Dentistry and Endodontics
    • /
    • 제29권1호
    • /
    • pp.58-67
    • /
    • 2004
  • The objectives of this study was to evaluate current visible light curing units regarding microhardness and microleakage. Fourty samples of composite resin(Z-250, 3M) were cured by different light curing units (Flipo, LOKKI; Credi II, 3M; XL 3000, 3M: Optilux 500, Demetron) in acrylic blocks. Microhardness was measured using a calibrated Vickers indenter on both top and bottom surfaces after 24 hours of storage in air at room temperature. Class V cavities were prepared on buccal and lingual surfaces of fourty extracted human molars. Each margin was on enamel and dentin/cementum. Composite resin(Z-250, 3M) was filled in cavities and cured by four different light curing units (Flipo, LOKKl; Credi II, 3M; XL 3000, 3M: Optilux 500, Demetron). The results of this syudy were as follows: Microhardness 1. Flipo showed low microhardness compared to Optilux 500, Credi II significantly in upper surface. Flipo didn't show a significant difference compared to XL 3000. 2. The microhardness resulting from curing with Flipo was lower than that of others on lower surfaces. Microleakage 1. Dentin margin showed significantly high dye penetration rate than enamel margin in all groups(p<0.05). 2. No significant differences were found on both enamel and dentin margin regarding curing units.

Comparison of Surface Microhardness of the Flowable Bulk-Fill Resin and the Packable Bulk-Fill Resin according to Light Curing Time and Distance

  • Hyung-Min Kim;Moon-Jin Jeong;Hee-Jung Lim;Do-Seon Lim
    • 치위생과학회지
    • /
    • 제23권2호
    • /
    • pp.123-131
    • /
    • 2023
  • Background: As a restorative material used to treat dental caries, the light-curing type resin is widely used, but it has the disadvantage of polymerization shrinkage. The Bulk-Fill composite resin was developed to solve these shortcomings, but the existing research mainly focused on comparing the physical properties of a composite resin and a Bulk-Fill resin. A study on the light curing time and distance of the Bulk-Fill resin itself tend to be lacking. Methods: This study compares the surface microhardness of specimens prepared by varying the light curing time and distance of smart dentin replacement (SDR) as a flowable Bulk-Fill resin and Tetric N-ceram as a packable Bulk-Fill resin, and confirms the polymerization time and distance that becomes the optimum hardness. To determine the hardness of the specimen, it was measured using the Vickers Hardness Number (Matsuzawa MMT-X, Japan). Results: In SDR, the surface microhardness decreased as the distance increased in all time groups in the change distance from the curing tip. In the change of light curing time with respect to the distance from curing tip, the surface microhardness increased as the time increased. In Tetric N-ceram, the surface microharness showed no significant difference in the change of the distance of curing tip in the group of 20 and 60 second. But in the group of 10 and 40 seconds, decreased as the distance increased. The surface microharness increased as the light curing time increased in all distance groups. Conclusion: When using SDR and Tetric N-ceram in clinical practice, it is considered that as the distance from the polymerization reactor tip increases, a longer light curing time than the polymerization time recommended by the manufacturer is required.

Electrodeposition법으로 제조한 Ni-Fe 나노박막 및 나노선의 특성에 미치는 용액 조성의 영향 (Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method)

  • 구본급
    • 한국표면공학회지
    • /
    • 제43권5호
    • /
    • pp.243-247
    • /
    • 2010
  • The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at $25^{\circ}C$ were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of $200\;{\AA}$ Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.

수소주입시킨 다상조직강의 Subsurface Zone 내 취성화 거동 (A Behavior of Embrittlement at the Subsurface Zones of Multiphase Steels Charged with Hydrogen)

  • 강계명;박재우;최종운
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.48-53
    • /
    • 2013
  • In the present work, it was investigated a behavior of hydrogen embrittlement at the subsurface zones of 590 DP steels by using the micro-Vickers hardness test. The micro-Vickers hardnessess of DP steels were measured to evaluate the degree of embrittlement as the effective hardening depths of subsurface zones with hydrogen charging conditions. The results showed that the distributions of micro-Vickers hardness in width varied from maximum hardness 239.5 Hv to minimum hardness 174 Hv, while the depth of effective hardening layer at the subsurface zones of DP steels was from $320{\mu}m$ to $460{\mu}m$ with hydrogen charging conditions, respectively. It was proposed that the distribution of microhardness be used as the evaluation index of the degree of embrittlement. But the variations of martensite volume fractions were not affected along depth of hardening at the same changing time, hydrogen charging times were appeared as an effective factor of the degree of embrittlement. Therefore, the micro-Vickers hardness test is an attractive tool for evaluation of hydrogen embrittlement at the subsurface zones of these DP steels.