• Title/Summary/Keyword: Vibro-acoustic Noise

Search Result 90, Processing Time 0.026 seconds

The Selection of Measurement Positions for BEM Based NAH Using a Non-conformal Hologram to Reduce the Reconstruction Error

  • Oey, Agustinus;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1018-1021
    • /
    • 2007
  • This paper explores the use of BEM based NAH to reconstruct the surface vibration of a plate in a rectangular finite cavity, in which the distances between sensors and the nearest points on the source surface are not equal. In such circumstances, different degree of information on propagating and non-propagating wave components will be detected by sensors at different positions, as well as the influence of measurement noise will vary significantly from the nearest points of measurement to the farthest ones. On the other hand, the condition number of the vibro-acoustic transfer function matrix relating normal surface velocities and field pressures will becomes high, numerically indicating an increase of linear dependency between rows of transfer function matrix. The combination of poor measurement and high condition number will result inaccurate reconstruction. Therefore, one approach to be investigated in this work is to select the measurement positions in such ways that reduce measurement redundancy, as it indicated by the condition number. The improvement is found to be significant in the numerical simulations utilizing two different criterions, spanning from over-determined to under-determined cases, and in the validation experiment.

  • PDF

Simulation Techniques for Mid-Frequency Vibro-Acoustics Virtual Tools For Real Problems

  • Desmet, Wim;Pluymers, Bert;Atak, Onur;Bergen, Bart;Deckers, Elke;Huijssen, Koos;Van Genechten, Bert;Vergote, Karel;Vandepitte, Dirk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.49-49
    • /
    • 2010
  • The most commonly used numerical modelling techniques for acoustics and vibration are based on element based techniques, such as the nite element and boundary element method. Due to the huge computational eorts involved, the use of these deterministic techniques is practically restricted to low-frequency applications. For high-frequency modelling, probabilistic techniques such as SEA are well established. However, there is still a wide mid-frequency range, for which no adequate and mature prediction techniques are available. In this frequency range, the computational eorts of conventional element based techniques become prohibitively large, while the basic assumptions of the probabilistic techniques are not yet valid. In recent years, a vast amount of research has been initiated in a quest for an adequate solution for the current midfrequency problem. One family of research methods focuses on novel deterministic approaches with an enhanced convergence rate and computational eciency compared to the conventional element based methods in order to shift the practical frequency limitation towards the mid-frequency range. Amongst those techniques, a wave based prediction technique using an indirect Tretz approach is being developed at the K.U.Leuven - Noise and Vibration Research group. This paper starts with an outline of the major features of the mid-frequency modelling challenge and provides a short overview of the current research activities in response to this challenge. Next, the basic concepts of the wave based technique and its hybrid coupling with nite element schemes are described. Various validations on two- and threedimensional acoustic, elastic, poro-elastic and vibro-acoustic examples are given to illustrate the potential of the method and its benecial performance as compared to conventional element based methods. A closing part shares some views on the open issues and future research directions.

  • PDF

Acoustic Radiation from the Modal Vibrations of a Thick, Finite Cylinder with Various Boundary Conditions (다양한 경계조건을 가진 유한 길이 후판 실린더의 고유진동에 의한 소음방사에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.585-596
    • /
    • 2013
  • This study introduces a hybrid approach combining numerical results with pre-developed analytical calculations for the sound radiation from the modal vibration of a thick, finite length cylinder with various boundary conditions. Structural vibrations of the cylinder are numerically investigated with the finite element method, and distributions of vibratory displacements on the cylinder surface are idealized as simple mathematical expressions based on the numerical results. Sound radiations from the normal vibration of the cylinder are calculated based on idealized modal displacements using a previously introduced theoretical solution. The results are confirmed with numerical analyses using the boundary element method. Based on these results, it can be concluded that the solutions suggested in this study have good accuracies in calculating the vibro-acoustic properties of a thick, finite cylinder with various boundary conditions. Also, the sound radiation characteristics of many practical components such as brake drums and motor housings are expected to be investigated using the procedure proposed in this study.

Near-field limit in positioning the microphone for pressure measurements in using the near-field acoustical holography (근접 음향 홀로그래피에서 음압 측정용 마이크로폰의 근접 거리 한계)

  • Kang, Sung-Chon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.731-736
    • /
    • 2000
  • The recently developed BEM-based NAH(nearfield acoustical holography) is a useful technique for identifying the sound source of vibrating objects. The acoustic parameters of a sound source can be reconstructed by using the vibro-acoustic transfer matrix, which is determined by means of BEM, and the sound pressure measured in the nearfield. Theoretically, one can come up with a very nice reconstructed result as the field plane gets near to the source surface. However, when a microphone is placed in the very close nearfield of the source surface, the scattering, reflection, or resonance in the gap between the source and the microphone can distort the acoustic field, and therefore, the measured field pressure would differ from the actual one in the absence of the microphone. In order to analyze this problem, the interference effect of the microphone is numerically calculated by using the nonsingular BEM that yields very small error in the nearfield. From this analysis, it is found that the prediction error of the field pressure decreases firstly and then increases as the microphone approaches the vibrating surface from the farfield to the close nearfield. It is noted that the microphone should be separated from the source surface by at least a diameter of the microphone for an error ratio less than 2% in the low frequency range less than about 2.7kHz. This means that if one wants to put a microphone in the very close nearfield. a microphone with small diameter should be used.

  • PDF

Interior Noise Reduction of Wheel Loader Using Transfer Path Analysis and Panel Contribution Analysis (전달 경로 분석과 패널 기여도 분석을 이용한 휠로더의 실내소음 저감에 관한 연구)

  • Kim, Bo-Yong;Shin, Chang-Woo;Jeong, Won-Tae;Park, Sung-Yong;Jang, Han-Kee;Kim, Seong-Jae;Kang, Yeong-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.805-815
    • /
    • 2008
  • Transfer path analysis(TPA) and panel contribution analysis(PCA) have been used widely to reduce interior noise of mechanical systems. TPA enables us to decompose interior noise into air-borne and structure-borne noises and estimate the path contribution of noise sources. PCA is also used to identify the noise contribution of each sub-panel in vibro-acoustic systems. In this paper, TPA and PCA are applied to wheel loader, one of the heavy construction equipments. Firstly, TPA for air-borne noise is conducted to estimate the contribution of air-borne sources using pressure transfer function. Thereafter, TPA for structure -borne noise is employed to verify the results of air-borne source quantification through the synthesis of two results. Secondly, PCA is performed by both TPA using pressure transfer function between panels inside the cabin and boundry element method(BEM) for the cabin of wheel loader with various boundary conditions. As a results, it was found that TPA conducted by experiments and PCA accomplished by both experiments and BEM are very effective methods in analyzing the path and contribution of the noises for reducing an interior noise level in the wheel loader system.

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF- based Substructuring Method (전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 동정)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.635-644
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared f3r the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate far realistic problems.

  • PDF

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method (전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 추정)

  • 황우석;이두호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.536-545
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, the stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate for realistic problems.

Measurement of decoupling performance of an multi-layered underwater decoupling material (다층구조 수중 방음재의 디커플링성능 측정방법에 대한 고찰)

  • Kim, SangRyul;Kim, Jae-Seung;Kim, Jae-Ho;Ham, Il-Bae;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.437-444
    • /
    • 2012
  • In this paper, the measurement method of the decoupling performance of a underwater decoupling material is studied. First, the simple vibro-acoustic coupled model of a multi-layered underwater decoupling material attached to a plate is analytically derived using impedance transfer matrix. Two test methods are introduced using the theoretical expression of the simple model. One is based on the ratio of the plate vibration and the radiated pressure under impact excitation of the plate. The other is based on the reciprocity theorem and uses the ratio of the incident pressure and the plate vibration under projector excitation in water. Some measurements are carried out according to the test methods using a pulse tube. The test results show the advantages and disadvantages of two methods. It is also shown that the combination of impact and projector excitation methods may be a useful tool to evaluate the performance of a underwater decoupling material.

  • PDF

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method (다중 전달함수합성법을 이용한 진동시스템의 결합부 특성 값 동정)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.501-509
    • /
    • 2003
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate even when applied to realistic problems.

  • PDF

Analysis of the Cause of Hindrance for Ride Quality with OPAX and OTPA (변수모델을 이용한 전달경로분석법(OPAX)과 전달률 함수를 사용한 전달경로분석법(OTPA)을 사용한 승차감 저해요인분석)

  • Kim, Jongsik;Sin, Kwangsoo;Choi, Sangil;Im, Sebin;Kim, Jindong;Lee, Sangkwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.935-942
    • /
    • 2014
  • The ride quality investigation is on-going topic in the car industry since its global standard has not evaluated and it is difficult to point out one part that hinders the ride quality. Since the traditional transfer path analysis that is widely used in car industry to investigate the ride quality requires a lot of test time to process the full data so that there are problems to conduct in industry. Based on these disadvantages, new approaches have developed such as OPAX(operational path analysis with eXogeneous inputs) and OTPA(operational transfer path analysis) for last decades. The OTPA only requires the operational data for evaluate the contribution of vibration sources and the OPAX has advantage of using parametric model to estimate the operating load and needs a minimum set of extra tests with excitation. In this paper, for evaluating the hindrance of ride quality two methods are used and the result is compared with another result of a car having higher ride quality.