• Title/Summary/Keyword: Vibrational effect

Search Result 211, Processing Time 0.025 seconds

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.

Equilibrium Fractionation of Clumped Isotopes in H2O Molecule: Insights from Quantum Chemical Calculations (양자화학 계산을 이용한 H2O 분자의 Clumped 동위원소 분배특성 분석)

  • Sehyeong Roh;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In this study, we explore the nature of clumped isotopes of H2O molecule using quantum chemical calculations. Particularly, we estimated the relative clumping strength between diverse isotopologues, consisting of oxygen (16O, 17O, and 18O) and hydrogen (hydrogen, deuterium, and tritium) isotopes and quantify the effect of temperature on the extent of isotope clumping. The optimized equilibrium bond lengths and the bond angles of the molecules are 0.9631-0.9633 Å and 104.59-104.62°, respectively, and show a negligible variation among the isotopologues. The calculated frequencies of the modes of H2O molecules decrease as isotope mass number increases, and show a more prominent change with varying hydrogen isotopes over those with oxygen isotopes. The equilibrium constants of isotope substitution reactions involving these isotopologues reveal a greater effect of hydrogen mass number than oxygen mass number. The calculated equilibrium constants of clumping reaction for four heavy isotopologues showed a strong correlation; particularly, the relative clumping strength of three isotopologues was 1.86 times (HT18O), 1.16 times (HT17O), and 0.703 times (HD17O) relative to HD18O, respectively. The relative clumping strength decreases with increasing temperature, and therefore, has potential for a novel paleo-temperature proxy. The current calculation results highlight the first theoretical study to establish the nature of clumped isotope fractions in H2O including 17O and tritium. The current results help to account for diverse geochemical processes in earth's surface environments. Future efforts include the calculations of isotope fractionations among various phases of H2O isotopologues with a full consideration of the effect of anharmonicity in molecular vibration.

Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

  • Lee, Weon-Gyu;Kelly, Aaron;Rhee, Young-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.933-940
    • /
    • 2012
  • Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic lightharvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density.

Using structural intensity approach to characterize vibro-acoustic behavior of the cylindrical shell structure

  • Wang, Yuran;Huang, Rong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.297-319
    • /
    • 2018
  • In this paper, the vibro-acoustic behaviors of vibrational cylindrical shells are investigated by using structural intensity approach. The reducing interior noise method for vibrating cylindrical shells is proposed by altering and redistributing the structural intensity through changing the damping property of the structure. The concept of proposed novel method is based on the properties of structural intensity distribution on cylindrical shells under different load and damping conditions, which can reflects power flow in the structures. In the study, the modal formulas of structural intensity are developed for the steady state vibration of cylindrical shell structures. The detailed formulas of structural intensity are derived by substituting modal quantities, in which the effect of main parameters such as weight coefficients and distribution functions on structure intensity are analyzed and discussed. Numerical simulations are first carried out based on the structural intensity analytical solutions of modal formulas. Through simulating the coupling vibration and acoustical radiation problems of cylindrical shell, the relationship between vibro-acoustic and structural intensity distribution is derived. We find that for cylindrical shell, by properly arranging damping conditions, the structural intensity can be efficiently changed and further the noise property can be improved. The proposed methodology has important implications and potential applications in the vibration and noise control of fuselage structure.

Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter

  • Chatzi, Eleni N.;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.295-328
    • /
    • 2015
  • In recent years the monitoring of structural behavior through acquisition of vibrational data has become common practice. In addition, recent advances in sensor development have made the collection of diverse dynamic information feasible. Other than the commonly collected acceleration information, Global Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for the successful monitoring and control of structural systems especially when aiming at real-time estimation. This task is not a straightforward one as measurements are inevitably corrupted with some percentage of noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is proposed for correcting the "drift effect" in displacement or rotation estimates in an online manner, i.e., on the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative example of a single degree of freedom linear oscillator is examined, where availability of acceleration measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the torsional identification of a tall tower structure, where acceleration measurements are obtained at a high sampling rate and non-collocated GPS displacement measurements are assumed available at a lower sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data sampled at different rates.

Fabrication of Microcrystalline NaPbLa(WO4)3:Yb3+/Ho3+ Phosphors and Their Upconversion Photoluminescent Characteristics

  • Lim, Chang Sung;Atuchin, Victor V.;Aleksandrovsky, Aleksandr S.;Denisenko, Yuriy G.;Molokeev, Maxim S.;Oreshonkov, Aleksandr S.
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.741-746
    • /
    • 2019
  • New triple tungstate phosphors NaPbLa(WO4)3:Yb3+/Ho3+ (x = Yb3+/Ho3+ = 7, 8, 9, 10) are successfully fabricated by microwave assisted sol-gel synthesis and their structural and frequency upconversion (UC) characteristics are investigated. The compounds crystallized in the tetragonal space group I41/a and the NaPbLa(WO4)3 host have unit cell parameters a = 5.3927(1) and c = 11.7961(3) Å, V = 343.05(2) Å3, Z = 4. Under excitation at 980 nm, the phosphors have yellowish green emissions, which are derived from the intense 5S2/5F45I8 transitions of Ho3+ ions in the green spectral range and strong 5F55I8 transitions in the red spectral range. The optimal Yb3+:Ho3+ ratio is revealed to be x = 9, which is attributed to the quenching effect of Ho3+ ions, as indicated by the composition dependence. The UC characteristics are evaluated in detail under consideration of the pump power dependence and Commission Internationale de L'Eclairage chromaticity. The spectroscopic features of Raman spectra are discussed in terms of the superposition of Ho3+ luminescence and vibrational lines. The possibility of controlling the spectral distribution of UC luminescence by the chemical content of tungstate hosts is demonstrated.

Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory

  • Mouaici, Fethi;Benyoucef, Samir;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.429-454
    • /
    • 2016
  • In this paper, a shear deformation plate theory based on neutral surface position is developed for free vibration analysis of functionally graded material (FGM) plates. The material properties of the FGM plates are assumed to vary through the thickness of the plate by a simple power-law distribution in terms of the volume fractions of the constituents. During manufacture, defects such as porosities can appear. It is therefore necessary to consider the vibration behavior of FG plates having porosities in this investigation. The proposed theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The equation of motion for FG rectangular plates is obtained through Hamilton's principle. The closed form solutions are obtained by using Navier technique, and then fundamental frequencies are found by solving the results of eigenvalue problems. Numerical results are presented and the influences of the volume fraction index and porosity volume fraction on frequencies of FGM plates are clearly discussed.

Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate

  • Jia, Anqiang;Liu, Haiyan;Ren, Lijian;Yun, Yingxia;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.111-127
    • /
    • 2020
  • The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, it is crucial to consider porosities inside the material structure.

Study on the In-Plane Vibration Characteristics of the Pneumatic Tires (공기압(空氣壓)타이어의 평면진동특성(平面振動特性)에 관(關)한 연구(硏究))

  • Kim, Nam Joen;Lee, Chong-Ho
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.9-15
    • /
    • 1987
  • The vibrational characteristics of a radial-ply (155SR13 4PR) and a biased-ply tire (6.15-134PR) were investigated for examining the effects of tires with different structure on the ride characteristics of the vehicle. The natural frequencies at the tread band, mode shapes, and damping factors of two tires at the state of plane vibration were determined experimentally. The test work was performed at four levels of the inflation pressure, ranging from 171.7 kPa to 245.2 kPa, and three levels of the vertical load, deviating by 10% from the standard load designated by the Department of Transportation of the United States of America. The following results were drawn by the analysis of the test results: 1. The first-order natural frequencies of the radial-ply and the biased-ply tires at the tread band were 112 Hz and 159 Hz, respectively, at the state o f the free vibration when the inflation pressure of 196.2 kPa was applied. It was known that the biased-ply tire has higher resonant frequency than the radial-ply tire and the natural frequencies of the both tires move to the high frequency range as t he inflation pressure is increased. 2. The vibration modes of both tires were quite different. No big difference in mode shapes was examined as the inflation pressure was increased. But the natural frequencies of two tires were changed. For the radial-ply tire, no difference in mode shape was found whether the vertical load was applied or not. But a significant difference in mode shape was examined for the biased-ply tire. 3. Any difference was not found in damping factor as the different inflation pressures were applied. 4. When no vertical load was applied, damping factors of the radial-ply and biased-ply tire at the state of the natural vibration ranged from 2.6 to 5.9%, and from 4.1 to 7.8%, respectively. It was estimated that the radial-ply tire would have better cushioning than the biased-ply tire since the vertical spring rate of the radial-ply tire was much less than that of the biased-ply tire, even though the damping effect of the radial-ply tire was smaller than that of the biased-ply tire.

  • PDF

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.