• Title/Summary/Keyword: Vibrational effect

Search Result 211, Processing Time 0.023 seconds

Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.545-554
    • /
    • 2020
  • The present paper explores nonlinear dynamical properties of piezo-magnetic beams based on a nonlocal refined higher-order beam formulation and piezoelectric phase effect. The piezoelectric phase increment may lead to improved vibrational behaviors for the smart beams subjected to magnetic fields and external harmonic excitation. Nonlinear governing equations of a nonlocal intelligent beam have been achieved based upon the refined beam model and a numerical provided has been introduced to calculate nonlinear vibrational curves. The present study indicates that variation in the volume fraction of piezoelectric ingredient has a substantial impact on vibrational behaviors of intelligent nanobeam under electrical and magnetic fields. Also, it can be seen that nonlinear free/forced vibrational behaviors of intelligent nanobeam have dependency on the magnitudes of induced electrical voltages, magnetic potential, stiffening elastic substrate and shear deformation.

Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory

  • Balubaid, Mohammed;Tounsi, Abdelouahed;Dakhel, B.;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.579-586
    • /
    • 2019
  • In this research paper, the free vibrational behavior of the simply supported FG nano-plate is studied using the nonlocal two variables integral refined plate theory. The present model takes into account the small scale effect. The effective's properties of the plate change according to the power law variation (P-FGM). The equations of motion of the system are determined and resolved via Hamilton's principle and Navier procedure, respectively. The validity and efficiency of the current model are confirmed by comparing the results with those given in the literature. At the last section, several numerical results are presented to show the various parameters influencing the vibrational behavior such as the small-scale effect, geometry ratio, material index and aspect ratio.

The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions

  • Fatima, Bounouara;Salem Mohammed, Aldosari;Abdelbaki, Chikh;Abdelhakim, Kaci;Abdelmoumen Anis, Bousahla;Fouad, Bourada;Abdelouahed, Tounsi;Kouider Halim, Benrahou;Hind, Albalawi;Abdeldjebbar, Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.367-383
    • /
    • 2023
  • In this investigation, an improved integral trigonometric shear deformation theory is employed to examine the vibrational behavior of the functionally graded (FG) sandwich plates resting on visco-Pasternak foundations. The studied structure is modelled with only four unknowns' variables displacements functions. The simplicity of the developed model being in the reduced number of variables which was made with the help of the use of the indeterminate integral in the formulation. The current kinematic takes into consideration the shear deformation effect and does not require any shear correction factors as used in the first shear deformation theory. The equations of motion are determined from Hamilton's principle with including the effect of the reaction of the visco-Pasternak's foundation. A Galerkin technique is proposed to solve the differentials governing equations, which enables one to obtain the semi-analytical solutions of natural frequencies for various clamped and simply supported FG sandwich plates resting on visco-Pasternak foundations. The validity of proposed model is checked with others solutions found in the literature. Parametric studies are performed to illustrate the impact of various parameters as plate dimension, layer thickness ratio, inhomogeneity index, damping coefficient, vibrational mode and elastic foundation on the vibrational behavior of the FG sandwich plates.

Effect of Vibrational Amplitude on Friction and Wear Properties of Magnetorheological Elastomer (진폭에 따른 자기유변탄성체의 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.39-43
    • /
    • 2016
  • Magnetorheological elastomers (MREs) are a type of “smart” material, and their properties can be controlled rapidly and reversibly under the influence of an external stimulus. The application of an external magnetic field can change the shear modulus, hardness, and friction coefficient of MREs. The friction can cause vibration; moreover, the vibration can affect friction. The change of friction depends on the relative motion, normal force, roughness of the rubbing surfaces, material type, temperature, lubrication, relative humidity, and vibration condition. As MREs are a type of “smart material,” their friction coefficient can be reduced by applying an external magnetic field—the applications of this feature in engineering have been widely studied. However, the friction properties of MREs under vibration have not been tested to date. In this study, MRE samples and a reciprocating friction tester were fabricated. The friction coefficient was measured to evaluate the friction properties under various vibration conditions; subsequently, the wear depth and wear surface profile of the MRE were observed in order to evaluate the wear properties. The results show that the friction coefficient of the MREs decreased when a magnetic field was applied. Moreover, the friction coefficient decreased when the vibrational amplitudes increased. The wear depth of the MRE also decreased as the vibrational amplitudes increased.

2,4,6-Triamino-1,3,5-triazin-1-ium Acetate Acetic Acid Solvate Monohydrate. Infrared and Raman Spectra

  • Marchewka, M.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.466-470
    • /
    • 2004
  • The crystals of the new melaminium salt, i.e. melaminium acetate acetic acid solvate monohydrate, $C_3H_7N_6^+ {\cdot}CH_3COO^- {\cdot}CH_3COOH{\cdot}H_2O$, were obtained by the slow evaporation of an aqueous solution at room temperature. Powder infrared and Raman spectra were measured and interpreted. The vibrational spectra in the region of internal vibrations of ions corroborate structural data recently published by Perpetuo and Janczak.$^1$ Some spectral features of this new crystal are referred to corresponding one for melamine crystal as well as other melamine complexes in crystalline form. Hydrogen-bonded network present in the crystal gives notable vibrational effect.

Evaluation and improvement of the vibrational characteristics in the automotive exhaust system (자동차 배기계의 진동특성의 평가 및 개선에 관한 연구)

  • Park, H;Jeon, E. S.;Oh, J. E.;Lim, D. G.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.47-55
    • /
    • 1990
  • This study is the first step for the grasp of transfer path to the vibration generated from the automotive engine and consideration of counterplan for optimal design and low vibration, low noise of the exhaust system. In this study, by applying the theory of modal analysis and experiment, vibrational reduction effect is evaluated according to the attachment of flexible coupling to the exhaust system. And data for the design is suggested to improve the characteristics of vibration. The vibration isolation and damping characteristics are improved due to the attachment of flexible coupling to the exhaust system. As a result, it is identified that flexible coupling which has good flexibility is more effective for the improvement of vibrational characteristics. By the estimation of modeshape of vibration, the location of optimal damping hanger is determined in the viewpoint of vibration isolation. Also it is confirmed that the characteristics of vibration is improved due to the attachment of damping hanger.

  • PDF

Simultaneous Vibrational and Rotational Transitions in HF + Ar (HF와 Ar 衝突中의 振動-回轉遷移)

  • Hyung Kyu Shin
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.12-24
    • /
    • 1974
  • The importance of rotational transitions in the vibrational deexcitation of HF(1${\rightarrow}$0) in HF+Ar collisions has been investigated by a semiclassical three-dimensional approach. Because of the inclusion of rotational transitions, this study gives vibrational transition probabilities which are very large compared to results of conventional vibration-to-translation energy transfer theories. Currently available experimental studies suggest that this effect is important and has to be included in rigorous calculations.

  • PDF

Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects

  • Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.169-186
    • /
    • 2020
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), mechanical-hygro-thermal vibrational analyzes of shear deformable porous functionally graded (FG) nanoplate on visco-elastic medium has been performed. The presented formulation incorporates two scale factors for examining vibrational behaviors of nano-dimension plates more accurately. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. It is supposed that the nano-size plate is exposed to hygro-thermal and variable compressive mechanical loadings. The governing equations achieved by Hamilton's principle are solved implementing DQM. Presented results indicate the prominence of moisture/temperature variation, damping factor, material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational frequencies of FG nano-size plate.

Vibration-Rotation Coupling in a Quasilinear Symmetric Triatomic Molecule

  • Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.228-236
    • /
    • 1994
  • The effect of the vibration mode coupling induced by the vibration-rotation interaction on total energy was investigated for the states with zero total angular momentum(J=0) in a quasilinear symmetric triatomic molecule of $AB_2$ type using a model potential function with a slight potential barrier to linearity. It is found that the coupling energy becomes larger for the levels of bend and asymmetric stretch modes and smaller for symmetric stretch mode as the excitation of the vibrational modes occurs. The results for the real molecule of $CH_2^+$, which is quasilinear, generally agree with the results for the model potential function in that common mode selective dependence of coupling energy is exhibited in both cases. The differences between the results for the model and real potential function in H-C-H system are analyzed and explained in terms of heavy mixing of the symmetric stretch and bend mode in excited vibrational states of the real molecule of $CH_2^+$. It is shown that the vibrational mode coupling in the potential energy function is primarily responsible for the broken nodal structure and chaotic behavior in highly excited levels of $CH_2^+$ for J= 0.

Molecular Vibrational Study of the Allosteric Effect in 2,2'-Bipyridyl Crown Ether (분자진동방법을 사용한 2, 2'-Bipyridyl Crown Ether 의 다른자리 입체성 효과에 관한 연구)

  • Wan Kyu Kim;Soon Ryang Chung
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.205-212
    • /
    • 1985
  • By using the Mass-Weighted-Cartesian coordinate method, the allosteric effect of 2,2'-bipyridyl crown(4) ether is studied. The vibrational modes of 235, 234, 188, and 178cm$^{-1}$ belong to the pore opening motion of crown ether and those of 168, 104, and 67cm$^{-1}$ belong to the rotational vibration motion of bipyridyl. Especially the mode appearing at 178cm$^{-1}$ shows a large allosteric effect by activation of the allosteric site.

  • PDF