Browse > Article
http://dx.doi.org/10.12989/cac.2019.24.6.579

Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory  

Balubaid, Mohammed (Department of Industrial Engineering, King Abdulaziz University)
Tounsi, Abdelouahed (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Dakhel, B. (Faculty of Applied Studies, GRC Department, King Abdulaziz University)
Mahmoud, S.R. (Faculty of Applied Studies, GRC Department, King Abdulaziz University)
Publication Information
Computers and Concrete / v.24, no.6, 2019 , pp. 579-586 More about this Journal
Abstract
In this research paper, the free vibrational behavior of the simply supported FG nano-plate is studied using the nonlocal two variables integral refined plate theory. The present model takes into account the small scale effect. The effective's properties of the plate change according to the power law variation (P-FGM). The equations of motion of the system are determined and resolved via Hamilton's principle and Navier procedure, respectively. The validity and efficiency of the current model are confirmed by comparing the results with those given in the literature. At the last section, several numerical results are presented to show the various parameters influencing the vibrational behavior such as the small-scale effect, geometry ratio, material index and aspect ratio.
Keywords
vibrational behaviour; FG nano-plate; small-scale effects; nonlocal theory;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 Zhang, L., Guo, J. and Xing, Y. (2018), "Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect", Int. J. Solid. Struct., 132-133, 278-302. https://doi.org/10.1016/j.ijsolstr.2017.10.020.   DOI
2 Ziaee, S. (2018), "Linear free vibration of micro-/nano-plates with cut-out in thermal environment via modified couple stress theory and Ritz method", Ain Shams Eng. J., 9(4), 2373-2381. https://doi.org/10.1016/j.asej.2017.05.003.   DOI
3 Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.   DOI
4 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.   DOI
5 Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.   DOI
6 Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.   DOI
7 Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.   DOI
8 Bensattalah, T., Zidour, M. and Daouadji, T.S. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
9 Berghouti, H., Adda Bedia, E.A. Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.   DOI
10 Bochkarev, A. (2017), "Influence of boundary conditions on stiffness properties of a rectangular nanoplate", Procedia Struct. Integ., 6, 174-181. https://doi.org/10.1016/j.prostr.2017.11.027.   DOI
11 Chen, T., Ye, Y. and Li, Y. (2018), "Investigations on structural intensity in nanoplates with thermal load", Physica E: Low-Dimens. Syst. Nanostr., 103, 1-9. https://doi.org/10.1016/j.physe.2018.05.012.   DOI
12 Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.   DOI
13 Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects", Mech. Adv. Mater. Struct., 25(7), 611-621. https://doi.org/10.1080/15376494.2017.1285464.   DOI
14 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York.
15 Askari, H., Jamshidifar, H. and Fidan, B. (2017), "High resolution mass identification using nonlinear vibrations of nanoplates", Measure., 101, 166-174. https://doi.org/10.1016/j.measurement.2017.01.012.
16 Ansari, R. and Norouzzadeh, A. (2016), "Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis", Physica E: Low-Dimens. Syst. Nanostr., 84, 84-97. https://doi.org/10.1016/j.physe.2016.05.036.   DOI
17 Ansari, R., Torabi, J. and Norouzzadeh, A. (2018), "Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method", Physica B: Condens. Matter., 534, 90-97.   DOI
18 Arefi, M. and Zenkour, A.M. (2017), "Thermo-electro-magnetomechanical bending behavior of size-dependent sandwich piezomagneticnanoplates", Mech. Res. Commun., 84, 27-42. https://doi.org/10.1016/j.mechrescom.2017.06.002.   DOI
19 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
20 Banh-Thien, T., Dang-Trung, H., Le-Anh, L., Ho-Huu, V. and Nguyen-Thoi, T. (2017), "Buckling analysis of non-uniform thickness nanoplates in an elastic medium using the isogeometric analysis", Compos. Struct., 162, 182-193. https://doi.org/10.1016/j.compstruct.2016.11.092.   DOI
21 Barati, M.R. and Shahverdi, H. (2017), "Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004.   DOI
22 Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
23 Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-427. https://doi.org/10.12989/scs.2019.31.4.419.   DOI
24 Fadoun, O.O. (2019), "Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation", Comput. Concrete, 23(5), 303-309. https://doi.org/10.12989/cac.2019.23.5.303.   DOI
25 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.   DOI
26 Farrokhabadi, A. and Tavakolian, F. (2017), "Size-dependent dynamic analysis of rectangular nanoplates in the presence of electrostatic, Casimir and thermal forces", Appl. Math. Model., 50, 604-620. https://doi.org/10.1016/j.apm.2017.06.017.   DOI
27 Ghadiri, M., Shafiei, N. and Alavi, H. (2017), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.   DOI
28 Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.   DOI
29 Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.   DOI
30 Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.   DOI
31 Karlicic, D., Cajic, M., Adhikari, S., Kozic, P. and Murmu, T. (2017), "Vibrating nonlocal multi-nanoplate system under inplane magnetic field", Eur. J. Mech.-A/Solid., 64, 29-45. https://doi.org/10.1016/j.euromechsol.2017.01.013.   DOI
32 Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012) "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.   DOI
33 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.   DOI
34 Liu, C., Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2016), "Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates", Theo. Appl. Mech. Lett., 6(6), 253-267. https://doi.org/10.1016/j.taml.2016.10.003.   DOI
35 Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.   DOI
36 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 179-188. https://doi.org/10.12989/anr.2019.7.3.181.
37 Mohseni, E., Saidi, A.R. and Mohammadi, M. (2018), "Vibration analysis of thick functionally graded micro-plates using HOSNDPT and modified couple stress theory", Iran. J. Sci. Technol. Tran. Mech. Eng., 43(1), 641-665. https://doi.org/10.1007/s40997-018-0185-6
38 Nematollahi, M.S., Mohammadi, H. and Nematollahi, M.A. (2017), "Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach", Superlat. Microstr., 111, 944-959. https://doi.org/10.1016/j.spmi.2017.07.055.   DOI
39 Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.   DOI
40 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.   DOI
41 Satish, N., Narendar, S. and Brahma Raju, K. (2017), "Magnetic field and surface elasticity effects on thermal vibration properties of nanoplates", Compos. Struct., 180, 568-580. https://doi.org/10.1016/j.compstruct.2017.08.028.   DOI
42 Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.   DOI
43 Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.   DOI
44 Sobhy, M. and Alotebi, M.S. (2018), "Transient hygrothermal analysis of FG sandwich plates lying on a visco-pasternak foundation via a simple and accurate plate theory", Arab. J. Sci. Eng., 43(10), 5423-5437. https://doi.org/10.1007/s13369-018-3142-1.   DOI
45 Yang, W.D., Yang, F.P. and Wang, X. (2017), "Dynamic instability and bifurcation of electrically actuated circular nanoplate considering surface behavior and small scale effect", Int. J. Mech. Sci., 126, 12-23. https://doi.org/10.1016/j.ijmecsci.2017.03.018.   DOI
46 Zargaripoor, A., Daneshmehr, A., Hosseini, I.I. and Rajabpoor, A. (2018), "Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method", J. Comput. Appl. Mech., 49(1), 86-101. https://doi.org/10.22059/JCAMECH.2018.248906.223.