• Title/Summary/Keyword: Vibrational Signals

Search Result 30, Processing Time 0.023 seconds

Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface

  • Lee, Chul-Jae;Kim, Hee-Jin;Karim, Mohammad Rezaul;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.545-548
    • /
    • 2006
  • We investigated the Surface-enhanced Raman Spectroscopy (SERS) spectrum of ethephone (2-chloroethylphosphonic acid). We observed significant signals in the ordinary Raman spectrum for solid-state ethephone as well as when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids that were prepared by the $\gamma$-irradiation method. The influence of pH and the influence of anion $(Cl^-,\;Br^-,\;I^-)$ on the adsorption orientation were investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions. The chlorine atom or the chlorine and two oxygen atoms were adsorbed on the colloidal silver surface. Among halide ions, $Br^-$ and $I^-$ were more strongly adsorbed on the colloidal silver surfaces. As a result, the adsorption of ethephone was less effective due to their steric hinderance.

Development of the Natural Frequency Analysis System to Examine the Defects of Metal Parts (금속 부품의 결함 판단을 위한 고유 주파수 분석 시스템 개발)

  • Lee, Chung Suk;Kim, Jin Young;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.169-174
    • /
    • 2015
  • In this study, we developed a system to detect the various defects in the metallic objects using the phenomenon that the defects cause the changes of the natural resonant frequencies. Our system consists of a FFT Amp, an Auto Impact Hammer, a Hammer controller and a PC. Auto Impact Hammer creates vibrations in the metallic objects when tapped on the surface. These vibrational signals are converted to the voltage signals by an acceleration sensor attached to the metallic part surface. These analog voltage signals were fed into an ADC (analog-digital converter) and an FFT (fast fourier transform) conversion in the FFT Amp to obtain the digital data in the frequency domain. Labview graphical program was used to process the digital data from th FFT amp to display the spectrum. We compared those spectra with the standard spectrum to find the shifts in the resonant frequencies of the metal parts, and thus detecting the defects. We used PCB's acceleration sensor and TI's TMS320F28335 DSP (digital signal processor) to obtain the resolution of 2.93 Hz and to analyze the frequencies up to 44 kHz.

Nonlinear Interferometry for Measuring the Nonresonant Third Order Susceptibilities of Gases (비선형분광간섭을 이용한 여러가지 기체의 비공명 3차 감수율 측정)

  • 한재원;이은성
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.473-480
    • /
    • 1994
  • We have applied nonlinear interferometry of coherent anti-Stokes Raman spectroscopy (CARS) to measure the nonresonant third order susceptibilities of various gases. For the experiment, we placed two gas cells serially and filled the first cell with argon as a calibration standard and the second cell with gases under test. The interference fringes of the CARS signals generated in the two gas cells were obtained by changing the thickness of the phase shifting unit which was made of BK-7 glass. The total effective nonresonant susceptibilities were determined from the measured amplitudes of the interference fringes of the CARS signals of the gases. The nonresonant susceptibilities were obtained by subtracting off resonant vibrational contributions from the total effective susceptibilities. The results of this work are compared with the published data and the overall uncertainty is estimated to be less than 5%. an 5%.

  • PDF

Surface-enhanced Raman Spectroscopy of Quinomethionate Adsorbed on Silver Colloids

  • Kim, Mak-Soon;Kang, Jae-Soo;Park, Si-Bum;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.633-637
    • /
    • 2003
  • We have studied the surface-enhanced Raman spectroscopy (SERS) spectrum of quinomethionate (6-methyl-1,3-dithiolo[4,5-b]quinoxalin-2-one), which is an insecticide or fungicide used on vegetables and wheat. We observed no signals in the ordinary Raman spectra of solid-state quinomethionate, but when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids prepared by the Creighton et al. method. The influence of pH and the aggregation inductors ($Cl^-,\;Br^-,\;I^-,\;F^-$) on the adsorption mechanism was investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions: The one N atom or two N atoms are chemisorbed on an Ag surface. An important contribution of the chemical mechanism was inferred when the one N atom was perpendicularly adsorbed on a surface. It is possible that quinomethionate can be detected to about $10^{-5}$ M.

FAULT DIAGNOSIS OF ROLLING BEARINGS USING UNSUPERVISED DYNAMIC TIME WARPING-AIDED ARTIFICIAL IMMUNE SYSTEM

  • LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1257-1274
    • /
    • 2023
  • Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.

Vibration Control of a Single-wheel Robot Using a Filter Design (필터 설계를 통한 한 바퀴 구동 로봇의 진동 제어)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.863-868
    • /
    • 2015
  • In this paper, the vibration of a single-wheel mobile robot is minimized by designing a filter. An AHRS (Attitude and heading reference system) sensor is used for measuring the state of the robot. The measured signals are analyzed using the FFT method to investigate the fundamental vibrational frequency with respect to the flywheel's speed of the gimbal system. The IIR notch filter is then designed to suppress the vibration at the identified frequency. After simulating the performance of the designated filter using the measured sensor data through extensive experiments, the filter is actually implemented in a single-wheel mobile robot, GYROBO. Finally, the performance of the designed filter is confirmed by performing the balancing control task of the GYROBO system.

Preliminary study on the Condition Monitoring of Wind-turbine Gearbox (풍력발전기용 증속기 상태 모니터링에 관한 기초 연구)

  • Park, Young-Jun;Lee, Jae-Jeong;Lee, Geun-Ho;Nam, Yong-Yun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.343-346
    • /
    • 2008
  • To improve the reliability and extend the life for a wind-turbine gearbox, the gearbox needs to be monitored and analysed exactly. This study was conducted to analyze and detect the gearbox conditions when lubricating oil contaminated by wear particles was used. Characteristics of the gearbox failure by wear particles were monitored simultaneously by the on-line measurement sensor of vibration, oil condition and temperature. For the detail vibration analyses, frequency analysis(FFT) was performed. The results of the study were summarized as follows: Vibrational signal was found sensitive to abnormal changes of the gearbox conditions when lubricant was contaminated by wear particles. Also, using frequency analysis for the harmonics of gear mesh frequency(GMF), it is found that the failure of gearbox was caused by the damages of meshing gears. However, temperature and oil condition measuring signals were found not so effective to detect any gearbox failure by oil contamination.

  • PDF

A Study on the Contribution of Each Mode in Vibration Response (진동응답에 나타난 모드의 기여도 평가에 관한 연구)

  • Jung, Soon-Chul;Lee, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.339-345
    • /
    • 2006
  • In this paper, a physically meaningful methodology which can assess the contribution of each vibration mode to various vibration response signals (displacement, velocity, acceleration) is developed. Based on these results, the problem of quantitative assessment of the relative importance of a structural system's vibrational modes is discussed. In addition, a direct method which ran assess the relative importance of each mode from uniformly sampled experimental data is also proposed.

Detection of localized defects in ball bearing using phase spectrum (위상스펙트럼을 이용한 볼베어링의 국부결함 검출)

  • Yoon, J.H.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.63-69
    • /
    • 1996
  • Recently, vibrational signal processing as a tool of machinery diagnosis has been actively studying. In this study, a new scheme for detection and diagnosis of localized defects in ball bearings, using unwrapped phase spectrum of FFT is described. The characteristic phase spectra for such defects shows linearly varying patterns due to the repetitive impact signals generated by localized defects, i.e., one linear line for single defect and various linearly changing shape according to angle between the two defect located points. The effectiveness of this method is confirmed by computer simulation and experiments on bearing with single or double defects at different locations.

  • PDF

A CMOS Interface Circuit with MPPT Control for Vibrational Energy Harvesting (진동에너지 수확을 위한 MPPT 제어 기능을 갖는 CMOS 인터페이스 회로)

  • Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.412-415
    • /
    • 2015
  • This paper presents a MPPT(Maximum Power Point Tracking) control CMOS interface circuit for vibration energy harvesting. The proposed circuit consists of an AC-DC converter, MPPT Controller, DC-DC boost converter and PMU(Power Management Unit). The AC-DC converter rectifies the AC signals from vibration devices(PZT). MPPT controller is employed to harvest the maximum power from the PZT and increase efficiency of overall system. The DC-DC boost converter generates a boosted and regulated output at a predefined level and provides energy to load using PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a schottky diode type DC-DC boost converter is used for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process. The chip area is $950um{\times}920um$.

  • PDF